Supplemental Tables

Supplemental Table 1. Additional characterization data for rosette nanotubes from select publications.

Source	Functionalization	Media	Characterization Technique	Measurement
1	crown ether	water	DLS (20, 30, 40 °C)	25.3, 52.7, 81.3 nm
			SAXS	3.6 nm diameter
			TEM	3.9 nm diameter
2	lysine	MES	DLS	30.4 nm
		buffer		
			TEM	4.0 nm diameter
				60 nm length
				(average)
3	lysine	water	TEM	3.5 nm diameter
4	lysine	titanium	TEM	3.4 nm diameter
		substrate		
			AFM	3.1 nm diameter
5	lysine	water	DLS	36 nm
			TEM	3.4 nm diameter
			AFM	3.2 nm diameter

References: ¹ Fenniri et al. (2002) ² Fenniri et al. (2001) ³ Fine et al. (2009) ⁴ Chun et al. (2005) ⁵ Moralez et al. (2005)

Abbreviations: (DLS) – dynamic light scattering, reported as hydrodynamic radius (R_H); (SAXS) – small angle x-ray scattering; (TEM) – transmission electron microscopy ; (AFM) – atomic force microscopy

Supplemental Table 2. Dosing metric conversions for lysine-functionalized rosette nanotubes.

Functionalization	Molar Mass (g/mol)	Surface Area (m²/g)	Equivalent Nanomaterial Dosing Metrics		
			Mass Per Volume (mg/L)	Particle Number per Volume (mol/L)	Surface Area per Volume (m²/L)
K-RNT	564.89	2.5x10 ³	10 50	1.77 x 10 ⁻⁵	25 125
			50 100	0.05 X 10 ⁻²	125
			100	1.// x 10 ⁻⁴	250

Supplemental Figure 1. RNTs absorb light at wavelengths important for toxicological assays. A 300-1100 nm absorbance spectrum for 100 mg L⁻¹ suspensions of K- and RGDSK¹/TBL⁹-RNTs demonstrates the intrinsic optical properties of these materials. Significant absorbance at 490 nm suggests potential interference with MTS assay outputs.

Concentration (mg L⁻¹)

Supplemental Figure 2. 3B11, 1G8 and 28S.3 response to RNT exposure was cell-line dependent. Flow cytometric data grouped by functionalization allowed a more direct comparison between cell-lines. 2.0x10⁴ 3B11, 1G8 or 28S.3 cells were incubated with 0.125, 0.25, 0.5, 1.0, 2.0 or 5.0 mg L⁻¹ (A) K-RNT, (B) TBL-RNT or (C) RGDSK¹/TBL⁹-RNT for 24 h. At high concentrations (1, 2 and 5 mg L⁻¹ RNT), the response of 3B11 and 1G8 cell lines was similar, and significantly different, from 28S.3 cells. Data were analyzed by three-way ANOVA with a Holm-Sidak *post hoc* test (p<0.05). Means ± SEM are shown, n=5.