Supporting Information

Mechanistic and Kinetic Insights into the Ligand-Promoted Depassivation of Bimetallic Zero-Valent Iron Nanoparticles

Di He, Xiaoming Ma, Adele M. Jones, Lam Ho and T. David Waite*

School of Civil and Environmental Engineering, University of New South Wales,

Sydney, NSW 2052, Australia

Environmental Science: Nano

Re-submitted, May 2016

Contents: 2 tables and 1 figure

Corresponding Author: Professor T. David Waite, Email: d.waite@unsw.edu.au

Section S1. Dissolution of nZVI under anaerobic conditions

SI Figure S1. Dissolution of nZVI under anaerobic conditions. Symbols are experimental data; lines are model predictions based on Eqs 1-3 in Table 1.

Section S2. Stability Constant Calculation

In order to apply stability constants to high ionic strength (I = 0.5) solutions, the mean ion activity coefficient was determined from Davies equation:

$$\log f_{\pm} = -AZ_i^2 \left(\frac{I^{1/2}}{1 + I^{1/2}} - bI\right)$$
(S1)

where *I* is ionic strength and *A* and *b* are constants in Davies equation (A = 0.5 and $b = 0.24^{1}$). The values of ion activity coefficients at I = 0.5 as a function of charges are shown in SI Table S1.

SI Table S1. Ion activity coefficients for dissolved ionic species at I = 0.5

Z_i	$-\log f_{\pm}$
±1	0.15
± 2	0.59
± 3	1.32
±4	2.35

Section S3. Calculation of Outer-Sphere Complex Stability Constants

A theoretical expression for outer-sphere complex stability constant (K_{os}), derived from statistical considerations and including both the electrostatic interaction of the ions and the effect of ionic strength on those interactions, is given by²

$$K_{\rm OS} = \frac{4000\pi Na^3 f_{\pm}^2}{3} \exp(\frac{-Z_{\rm M} Z_{\rm EDTA} e^2}{4\pi\varepsilon_0 \varepsilon k Ta})$$
(S8)

where *e* is the elementary charge of an electron (1.6×10^{-19} C), *N* is the Avogadro constant (6.0×10^{23} mol-1), k is the Boltzmann constant (1.4×10^{-23} J K-1), *T* is the absolute temperature (298 K), ε_0 is the vacuum permittivity (8.85×10^{-12} C), ε is the relative permittivity of water at 25 °C (78.5), *a* is the distance of closest approach of the ions (assumed to be 5.0×10^{-10} m), $Z_{\rm m}$ and $Z_{\rm EDTA}$ are the charges of the individual metal and EDTA species, respectively, and f_{\pm} is the mean ionic activity coefficient,

$$\log f_{\pm} = A Z_{\rm M} Z_{\rm EDTA} \left(\frac{I^{1/2}}{1 + I^{1/2}} - bI \right)$$
(S9)

where *I* is ionic strength and *A* and *b* are constants in Davies equation (A = 0.5 and $b = 0.24^{1}$). The values of ion activity coefficients and outer-sphere stability constants as a function of charges at I = 0.5 are shown in SI Table S3. As such, the complex formation rate constants can be calculated according to Eq. S7, as demonstrated in SI Table S4.

$Z_{\rm M}Z_{\rm EDTA}$	f_{\pm}^{2}		K _{os}	
	I = 0	I = 0.5	$I = 0^{a}$	I = 0.5
0	1	1	0.32	0.32
-1	1	0.51	1.32	0.41
-2	1	0.26	5.50	0.52
-3	1	0.13	22.9	0.67
-4	1	6.66×10 ⁻²	95.5	0.87
-6	1	1.72×10 ⁻²	1.66×10 ³	1.44
-8	1	4.43×10 ⁻³	2.88×10^{4}	2.38

SI Table S3. Correction of outer-sphere stability constants to I = 0.5.

^aMorel and Hering¹

REFERENCES

1. Morel, F. M. M.; Hering, J. G., *Principles and Applications of Aquatic Chemistry*. John Wiley & Sons: 1993.

2. Fujii, M.; Rose, A. L.; Waite, T. D.; Omura, T., Effect of divalent cations on the kinetics of Fe(III) complexation by organic ligands in natural waters. *Geochim. Cosmo. Acta* **2008**, *72*, (5), 1335-1349.