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Table S1 Fitted parameters of the exponential decay model for the dissolution rate (R) in the

batch experiments

LMWOAs Co=0.2 g L' HANPs Co=1 g L' HANPs

d, R? d, d> R?
Acetic acid -0.412 1.0 —0.340 —3.50 1.0
Oxalic acid —0.107 0.91 —0.016 —1.82 0.97
Citric acid —0.069 0.97 —0.013 —1.69 0.94

dy and d, are the decay coefficients for R caused by proton and ligand, respectively.
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Table S2 Fitted parameters of the two-site dissolution model in the batch experiments

Co LMWOAs C[PO& Tmaxt ki C[PO4 Tmax2 ks R?
(gL™ %)  mvM @) %) mM) ()

0.2  Aceticacid  6.34 0.076 152 6.34 0.076 640 1.0

Oxalicacid  16.0 0.191  6.04 6.50 0.078 6.04 1.0

Citric acid 22.8 0.273 679 7.51 0.090 1.36 0.99

1 Acetic acid 2.62 0.157 14.9 0.500 0.030 5.84 0.99
Oxalic acid 5.65 0.338 20.0 0.595 0.035 0.806 0.99
Citric acid 8.17 0.488 35.0 1.09 0.065 0.194 0.99

C[PO4#* Jmaxi and C[PO4* ]nax> are the concentrations (mM) of total dissolved phosphate
associated with site 1 and site 2, respectively; and k; and k; are the dissolution rate constants (h™")

associated with site 1 site and 2, respectively.
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Proton-promoted

Ligand-controlled

Fig. S1 Schematic illustration of HANPs dissolution mechanisms in the presence of LMWOA
that includes proton (H") and ligand (COOH") functional groups. Proton-promoted dissolution (1)

and ligand-controlled dissolution (2) are two major mechanisms controlling HANPs dissolution.
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Fig. S2 Chemical speciation of 1 mM acetic acid (a), oxalic acid (b), and citric acid (c),

respectively, versus pH calculated using the Visual MINTEQ 3.0 software.
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Fig. S3 Dissolution rate (R; mol m™2 s ') of HANPs versus time under different LMWOAs (I mM acetic, oxalic, and citric acids,

respectively) in batch experiments at initial HANPs concentrations (Cy) of 0.2 (a—c) and 1 g L™! (d—f), respectively. Error bars

represent the standard deviations in triplicate experiments. The data are fitted using the exponential decay function: ¥ = ae ;

d x dx
Y ipe?

where d, and d, are the decay coefficients for R caused by proton and ligand, respectively; and a and b are constants.
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Fig. S4 Net dissolution rate (R,; mol m™2 s7!) of HANPs versus Az under different LMWOAs (1 mM acetic, oxalic, and citric acids,

respectively) in batch experiments at C;=0.2 (a—c) and 1 g L™! (d—f), respectively. Error bars represent the standard deviations in

dM  AMy,

Rnet S.dt
L

triplicate experiments. S iAtZl, where AM,; is the mass consumption (mol) of HANPs from time #; to #, (At ;=t,—t1; t>1).

Lines are just connections between data points.
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Fig. S5 Average dissolution rate (R,.) of HANPs versus carboxyl group number (N; a) of

LMWOAs (N=1, 2, and 3, respectively, for acetic, oxalic, and citric acids) and consumed amount

of proton when the dissolution reaction reaches equilibrium (b) at Cy=0.2 and 1 g L™! in batch

experiments and Cy=0.2 g L! in column experiments. Error bars represent the standard

deviations in

triplicate experiments.
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Fig. S6 Linear relationship between average dissolution rate (R,) and dissolution rate constant
(k1) on site 1 under different LMWOAs (I mM acetic acid, oxalic acid, and citric acid,

respectively) at Co=0.2 and 1 g L' in batch experiments. Error bars represent the standard

deviations in triplicate experiments.
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Fig. S7 Change in average hydrodynamic diameter (Dy) of HANPs versus time under 1 mM

acetic acid, oxalic acid, and citric acid, respectively, at Cp=0.2 g L™!. Error bars represent the

standard deviations in triplicate experiments.
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Fig. S8 TEM images of pristine (starting) HANPs (a) and partially dissolved HANPs (b—d)

under 1 mM acetic acid at C;=0.2 g L.
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Fig. S9 Breakthrough curve (a) and retention profile (b) of HANPs at C;=0.2 g L™! in saturated
quartz sand column. (a) Black arrow represents the duration of HANPs suspension injecting in

the column. Error bars represent the standard deviations.
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Fig. S10 Breakthrough curve of tracer (KNQO3) in saturated quartz sand column.
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Fig. S11 Normalized effluent concentration (a) and effluent pH (b) versus PV when continuously
injecting 90 PVs of 1 mM acetic acid to dissolve the HANPs retained in the column at Cy=1 g
L
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Fig. S12 Phosphate oxygen isotope ratios (8'®0p) of dissolved phosphate and undissolved
(particulate) HANPs under 1 mM oxalic acid over a short-time period (<1 h) at Cy=1 g L.
Standard deviation is calculated from isotopic composition of phosphate from each sample. The
ABOp describes phosphate oxygen isotope fractionation of dissolved phosphate (or undissolved
HANPs) relative to the bulk (starting) HANPs (5'30p), A8Op = 8'30p_dgissolved phosphate — 0'5Opg (0r

A"80p = 8"80p_yndissolved HANPs — 0'3Opy).
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