Electronic Supplementary Information (ESI)

Effects of Low-Molecular-Weight Organic Acids on the Dissolution of Hydroxyapatite Nanoparticles

Dengjun Wang,^a Yunsong Xie,^b Deb P. Jaisi^{*a} and Yan Jin^{*a}

^a Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States ^b Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, United States

> *Corresponding Authors: **Deb P. Jaisi** E-mail: jaisi@udel.edu **Yan Jin** E-mail: yjin@udel.edu

> > #First Author

Dengjun Wang

E-mail: wangdengjun1986@gmail.com

Number of Pages:	16
Number of Tables:	2
Number of Figures:	12

- Table S1
 Fitted parameters of the exponential decay model for the dissolution rate in batch experiments
- **Table S2** Fitted parameters of the two-site dissolution model in batch experiments
- Fig. S1 Schematic illustration of HANPs dissolution mechanisms in the presence of LMWOA
- Fig. S2 Chemical speciation of 1 mM acetic acid, oxalic acid, and citric acid versus pH
- Fig. S3 Dissolution rate of HANPs versus time in batch experiments
- **Fig. S4** Net dissolution rate of HANPs versus Δt in batch experiments
- Fig. S5 Average dissolution rate of HANPs versus carboxyl group number of LMWOAs and consumed amount of proton when the dissolution reaction reaches equilibrium in batch and column experiments
- **Fig. S6** Linear relationship between average dissolution rate (R_{ave}) and dissolution rate constant (k_1) on site 1 under different LMWOAs (1 mM acetic acid, oxalic acid, and citric acid, respectively) at $C_0=0.2$ and 1 g L⁻¹ in batch experiments.
- Fig. S7 Change in average hydrodynamic diameter of HANPs versus time
- **Fig. S8** TEM images of pristine (starting) HANPs and partially dissolved HANPs in 1 mM acetic acid
- **Fig. S9** Breakthrough curve and retention profile of HANPs at an initial HANPs concentration of 0.2 g L^{-1} in saturated quartz sand column
- Fig. S10 Breakthrough curve of the tracer in saturated quartz sand column
- Fig. S11 Normalized effluent concentration and effluent pH versus pore volume when continuously injecting 1 mM acetic acid
- Fig. S12 Phosphate oxygen isotope ratios of dissolved phosphate and undissolved (particulate) HANPs in 1 mM oxalic acid over a short-time period (≤ 1 h) at an initial HANPs concentration of 1 g L⁻¹

LMWOAs	C ₀ =($0.2 \text{ g } \text{L}^{-1} \text{ HAM}$	NPs	С	$C_0=1$ g L ⁻¹ HANPs			
	d_1	d_2	<i>R</i> ²	d_1	d_2	<i>R</i> ²		
Acetic acid	-0.412	-4.13	1.0	-0.340	-3.50	1.0		
Oxalic acid	-0.107	-3.50	0.91	-0.016	-1.82	0.97		
Citric acid	-0.069	-3.00	0.97	-0.013	-1.69	0.94		

Table S1 Fitted parameters of the exponential decay model for the dissolution rate (R) in the batch experiments

 d_1 and d_2 are the decay coefficients for *R* caused by proton and ligand, respectively.

C_0	LMWOAs	$C[\mathrm{PO}_4^{3-}]_{\mathrm{max}1}$		k_1	$C[\mathrm{PO}_4^{3-}]_{\mathrm{max}2}$		<i>k</i> ₂	<i>R</i> ²
(g L ⁻¹)		(%)	(mM)	(h^{-1})	(%)	(mM)	(h ⁻¹)	
0.2	Acetic acid	6.34	0.076	15.2	6.34	0.076	640	1.0
	Oxalic acid	16.0	0.191	6.04	6.50	0.078	6.04	1.0
	Citric acid	22.8	0.273	679	7.51	0.090	1.36	0.99
1	Acetic acid	2.62	0.157	14.9	0.500	0.030	5.84	0.99
	Oxalic acid	5.65	0.338	20.0	0.595	0.035	0.806	0.99
	Citric acid	8.17	0.488	35.0	1.09	0.065	0.194	0.99

Table S2 Fitted parameters of the two-site dissolution model in the batch experiments

 $C[PO_4^{3-}]_{max1}$ and $C[PO_4^{3-}]_{max2}$ are the concentrations (mM) of total dissolved phosphate associated with site 1 and site 2, respectively; and k_1 and k_2 are the dissolution rate constants (h⁻¹) associated with site 1 site and 2, respectively.

Fig. S1 Schematic illustration of HANPs dissolution mechanisms in the presence of LMWOA that includes proton (H⁺) and ligand (COOH⁻) functional groups. Proton-promoted dissolution (1) and ligand-controlled dissolution (2) are two major mechanisms controlling HANPs dissolution.

Fig. S2 Chemical speciation of 1 mM acetic acid (a), oxalic acid (b), and citric acid (c), respectively, versus pH calculated using the Visual MINTEQ 3.0 software.

Fig. S3 Dissolution rate (*R*; mol m⁻² s⁻¹) of HANPs versus time under different LMWOAs (1 mM acetic, oxalic, and citric acids, respectively) in batch experiments at initial HANPs concentrations (*C*₀) of 0.2 (a–c) and 1 g L⁻¹ (d–f), respectively. Error bars represent the standard deviations in triplicate experiments. The data are fitted using the exponential decay function: $y = ae^{d_1x} + be^{d_2x}$; where *d*₁ and *d*₂ are the decay coefficients for *R* caused by proton and ligand, respectively; and *a* and *b* are constants.

Fig. S4 Net dissolution rate (R_{net} ; mol m⁻² s⁻¹) of HANPs versus Δt under different LMWOAs (1 mM acetic, oxalic, and citric acids, respectively) in batch experiments at $C_0=0.2$ (a-c) and 1 g L⁻¹ (d-f), respectively. Error bars represent the standard deviations in

triplicate experiments. $R_{net} = \frac{dM}{S_i dt} = \frac{\Delta M_{21}}{S_i \Delta t_{21}}$, where ΔM_{21} is the mass consumption (mol) of HANPs from time t_1 to t_2 ($\Delta t_{21} = t_2 - t_1$; $t_2 > t_1$). Lines are just connections between data points.

Fig. S5 Average dissolution rate (R_{ave}) of HANPs versus carboxyl group number (N; a) of LMWOAs (N=1, 2, and 3, respectively, for acetic, oxalic, and citric acids) and consumed amount of proton when the dissolution reaction reaches equilibrium (b) at $C_0=0.2$ and 1 g L⁻¹ in batch experiments and $C_0=0.2$ g L⁻¹ in column experiments. Error bars represent the standard deviations in triplicate experiments.

Fig. S6 Linear relationship between average dissolution rate (R_{ave}) and dissolution rate constant (k_1) on site 1 under different LMWOAs (1 mM acetic acid, oxalic acid, and citric acid, respectively) at C_0 =0.2 and 1 g L⁻¹ in batch experiments. Error bars represent the standard deviations in triplicate experiments.

Fig. S7 Change in average hydrodynamic diameter ($D_{\rm H}$) of HANPs versus time under 1 mM acetic acid, oxalic acid, and citric acid, respectively, at $C_0=0.2$ g L⁻¹. Error bars represent the standard deviations in triplicate experiments.

Fig. S8 TEM images of pristine (starting) HANPs (a) and partially dissolved HANPs (b–d) under 1 mM acetic acid at $C_0=0.2$ g L⁻¹.

Fig. S9 Breakthrough curve (a) and retention profile (b) of HANPs at $C_0=0.2$ g L⁻¹ in saturated quartz sand column. (a) Black arrow represents the duration of HANPs suspension injecting in the column. Error bars represent the standard deviations.

Fig. S10 Breakthrough curve of tracer (KNO₃) in saturated quartz sand column.

Fig. S11 Normalized effluent concentration (a) and effluent pH (b) versus PV when continuously injecting 90 PVs of 1 mM acetic acid to dissolve the HANPs retained in the column at $C_0=1$ g L⁻¹.

Fig. S12 Phosphate oxygen isotope ratios ($\delta^{18}O_P$) of dissolved phosphate and undissolved (particulate) HANPs under 1 mM oxalic acid over a short-time period (≤ 1 h) at $C_0=1$ g L⁻¹. Standard deviation is calculated from isotopic composition of phosphate from each sample. The $\Delta^{18}O_P$ describes phosphate oxygen isotope fractionation of dissolved phosphate (or undissolved HANPs) relative to the bulk (starting) HANPs ($\delta^{18}O_{P0}$), $\Delta^{18}O_P = \delta^{18}O_{P-dissolved phosphate} - \delta^{18}O_{P0}$ (or $\Delta^{18}O_P = \delta^{18}O_{P-undissolved HANPs} - \delta^{18}O_{P0}$).