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1. Measurements of dephosphorylating activity - experimental
details

HPLC analyses

Concentrations of ATP and related compounds, as well as their products of dephosphorylation
and reaction intermediates, were determined by liquid chromatography using the LaChrom
HPLC system (Merck/Hitachi) consisting of the L-7100 pump, the L-7400 variable
wavelength UV/Vis detector operating at 240 nm, the Rheodyne 77251 injection valve with 20
pL sampling loop and the SeQuant ZIC-HILIC column (Merck, Darmstadt, Germany) 150 x
4.6 mm, packed with zwitterionic stationary phase bound to silica, 3.5 um. Basic operational
and performance characteristics are given in Table S1, example of the separation is given in
Fig. S1.

Table S1. Mobile phase composition and performance characteristics of the HPLC method

Substrate Mobile phase Analyte tr (min) LOD RSD (%)
(mg/L)

ATP acetonitrile/acetate buffer adenosine 2.20 5.57 6.5
0.05 mol/L, pH 5.01 AMP 4.93 4.80 6.6
65/35 (v/v) ADP 6.37 3.05 10.9

ATP 7.40 3.26 12.5

IMP acetonitrile/acetate buffer inosine 1.83 4.24 7.13
0.05 mol/L, pH 5.01 IMP 9.75 7.64 11.6
65/35 (v/v)

CMP acetonitrile/acetate buffer cytidine 2.85 3.82 6.8
0.05 mol/L, pH 5.01 CMP 6.30 4.03 6.9
60/40 (v/v)

GMP acetonitrile/acetate buffer guanosine ND ND ND
0.05 mol/L, pH 5.01 GMP 342 5.56 9.4
45/55 (v/v)

TPP acetonitrile/acetate buffer thiamine 3.62 6.04 8.4
0.05 mol/L, pH 5.01 TMP 5.24 5.12 12.2
45/55 (v/v) TPP 4.37 5.25 11.3

ATP — adenosine triphosphate; ADP- adenosine diphosphate, AMP — adenosine monophosphate; IMP — inosine
5’- monophosphate; CMP — cytidine 5"-monophosphate; GMP 5’-guanosine monophosphate; TPP — thiamine
pyrophosphate; TMP — thiamine monophosphate; ND — not detected (sparingly soluble); tg — retention time;

LOD - limit of detection; RSD — relative standard deviation of repeatability (n=7)
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Fig. S1. HPLC separation of model mixture. Concentrations: 0.1 mmol/L of adenosine, 0.2 mmol/L of AMP, ADP and ATP.

Alternatively, the Triart Diol-HILIC column (YMC Comp., Kyoto, Japan) 150 x 3 mm, 5 um,
was used under similar conditions (mobile phase composition, detection); comparable
performance characteristics were achieved with this column.

Some examples of the chromatographic analyses are shown in Fig. S2. It is shown in
Fig. S2a that ATP is dephosphorylated partially in the presence of the in-house cerium oxide
(denoted as CeO,-500°C here). The peaks corresponding to the dephosphorylation products
(ADP, AMP and adenosine) are clearly visible on the chromatogram. Only minor amounts of
the dephosphorylation products were detected when the experiment was performed in the
presence of the commercial nanoceria MKN-025, whereas the blank experiments confirmed
that the dephosphorylation does not proceed in the absence of cerium oxide.

In Fig S2b, the dephosphorylating activity of the cerium oxide was compared with the
activities of oxides of other REEs (lanthanum, praseodymium and neodymium) that were
prepared in a similar way as the in-house cerium oxide used in this study. As can be seen,
AMP was dephosphorylated and an (almost) equivalent amount of adenosine liberated in the
presence cerium oxide, whereas the oxides of other REEs exhibited negligible
dephosphorylating activity under identical conditions (note that the peak of AMP remained
almost unchanged in the presence of lanthanum oxide, praseodymium oxide and neodymium
oxide, whereas it disappeared completely in the presence of cerium oxide, and a new peak
was identified as adenosine).
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Fig. S2. a) Dephosphorylation of ATP in the presence of cerium oxide annealed at 500°C and commercial nanoceria MKN-
025. Initial concentrations of AMP 0.002 mol/L,; 0.04 mol/l TRIS buffer with pH = 7.22. Concentrations of cerium oxides
0.5 g/100 mL; equilibrating time 48 hours. Chromatographic conditions: Column YMC-TRIART DIOL-HILIC, 150 x 4.6
mm, 5 pm; mobile phase acetonitrile/ammonium acetate 0.10 mol/L, pH 5.00 (67/33, v/v); detection UV 240 nm. Peak
identification: / — adenosine; 2 — AMP; 3 — ADP; 4 — ATP. b) Dephosphorylation of AMP in the presence of cerium oxide
annealed at 500°C and oxides of some other REEs prepared in a similar way. Initial concentrations of AMP 0.002 mol/L,;
0.04 mol/l TRIS buffer with pH = 7.22. Concentrations of REEs oxides 2.0 g/100 mL; equilibrating time 48 hours.
Chromatographic conditions: Column YMC-TRIART DIOL-HILIC, 150 x 4.6 mm, 5 pm; mobile phase
acetonitrile/ammonium acetate 0.01 mol/L, pH 5.01 (75/25, v/v); detection UV 240 nm.

Dephosphorylating measurements

The long-term dephosphorylation experiments were carried out in 20 mL glass vials
containing 10 mL of a 0.002 mol/L ATP solution in TRIS buffer (concentration of 0.04
mol/L, pH 7.22). The kinetic experiments were initiated by the addition of a known amount of
cerium oxide (typically 0.05 g). The closed glass vials were wrapped in aluminium foil to
protect the reaction mixture from sunlight and then agitated on a horizontal shaker with an
agitation intensity of 2 rps. At pre-determined time intervals, small amounts (0.1-0.5 mL) of
the reaction mixture were removed, acidified with 1 mL of formic acid (1%) and diluted to 5
mL with acetonitrile. Cerium oxide was separated by centrifugation (4000 rpm, 5 min), and
the supernatant was analyzed immediately by liquid chromatography. Simultaneously, blank
experiments were carried out in the same arrangement without cerium oxide. The short-term
experiments were carried out in a beaker covered with aluminium foil. Appropriate amounts



of the TRIS buffer and ATP stock solution were mixed together to produce a mixture with an
initial ATP concentration of 0.002 mol/L, buffer concentration of 0.04 mol/L and pH of 7.22.
The mixture was agitated with a magnetic stirrer. The kinetic experiments were initiated by
the addition of a known amount of cerium oxide (ranging from 0.5 to 2 g per 100 mL). The
liquid chromatographic analyses were performed in a similar way as described above. The
mode of agitation was confirmed to not significantly affect the dephosphorylation rate. All the
experiments were carried out in an air-conditioned box at 22+1°C. Alternatively, TRIS
buffers with the same concentration (0.04 mol/L) but different pH values (6.00, 8.00 or 9.00)
or acetate buffers with the same concentration but a pH of 4.00 or 5.00 were used.

Quality control and uncertainty estimation

As a part of the validation study preceding the dephosphorylating experiments, the
main performance characteristics of the chromatographic method were determined including
standard deviations of repeatability. This parameter encompasses all uncertainty contributions
related to the chromatographic measurements including the sample pre-treatment (pH
adjustment, dilution, centrifugation); the respective values are summarized in Table S1.

Several kinds of the quality-control (QC) samples were used regularly to check the
quality of the chromatographic measurements, such as reagent blanks and in-house reference
materials consisting of the analyte solutions daily prepared independently on the calibration
standards.
The dephosphorylating experiments were performed in duplicate. A consistency of the
experimental data was evaluated by a visual inspection of the dephosphorylating curves. In
the case of inconsistency, the whole dephosphorylating experiment was repeated, again in
duplicate. The averages from the duplicate measurements were plotted against the reaction
time to obtain the dephosphorylating dependencies. An uncertainty arising from the duplicate
experiments was combined with the uncertainty of chromatographic measurements according

to a general rule “T.rel =\ uD’iel + U, Zrel . The experimental data from the dephosphorylating
experiments were plotted as an average from duplicate measurements accompanied by an
uncertainty (error bar) expressed as a standard deviation.

Simultaneously with every dephosphorylating experiment, the blank experiments were
performed in the same experimental arrangement without cerium oxide. As an example, the
dephosphorylating experiments at various pH values are shown in the following figure
together with the respective blank experiments.
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Fig. S3. Dephosphorylation of ATP at various pH values in the presence of cerium oxide annealed at 500°C. Initial
concentration of ATP, 0.002 mol/L; concentration of cerium oxide, 0.5 g/100 mL (left columns); TRIS buffer, 0.04 mol/L
and pH = 7.22. Right columns (open symbols) — blank experiments. c/co = concentrations of individual species divided by
the initial concentration of ATP.



2. SEM images
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Fig. S4. SEM images of the carbonate precursor (first row) and cerium oxides annealed at various temperatures.



3. TEM images

—————200m

Fig. S5. TEM images of cerium oxides annealed at various temperatures. The TEM images together with the diffraction
patterns (right column) suggest that the cerium oxide annealed at lower temperatures consists of a large number of small
particles, whereas the cerium oxide annealed at higher temperatures consists of a small number of large particles. (The
number of particles may be related the intensity of the diffraction lines.)
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4. High resolution XPS spectra
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Fig. S6. High resolution XPS spectra Ce 3d for cerium oxide annealed at various temperatures ranging from 200 (top-left) to
1000°C (right — down).
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Fig. S7. High resolution XPS spectra O 1s for cerium oxide annealed at various temperatures ranging from 200 (top-left) to
1000°C (right — down).

Table S2. Cerium and oxygen speciation in cerium oxide calculated from XPS spectra

Temperature of Ce(IV) Ce(IID) O-lattice O-OH
calcination (°C)

75.54 24.46 68.97 31.03

78.33 21.67 82.81 17.19

77.07 22.93 85.96 14.04

73.50 26.50 84.45 15.55
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5. Kinetics of the dephosphorylation
Dephosphorylation of adenosine phosphates can be described by a well-known Michaelis-
Menten model for enzymatic catalysis or by an almost identical Langmuir-Hinshelwood
model of heterogeneous catalysis:

k

s cat

AS B

A
k

d

Even in its basic form, this model gives rather complex rate equations where the reaction
order is not clear. However, in the first approximation, the dephosphorylation of ATP to
adenosine di- and mono-phosphate, and finally to adenosine may be described as a set of
subsequent pseudo first-order reactions

kl k2 k3

A B C D

dcy
-—— =kicy

dt (1)
dc
F:kch_kch (2)
dc
Frs = kycp— ksce 3)
dc
__2 = k3CC
dt (4)

from which time dependencies for all compounds can be explicitly expressed:

c, = clexp (- k, t) (5)
o M
Cp = Cap % [exp(-kyt)-exp (- ky,)]
2= Ky (6)
cc = cylaexp(-kqt) - bexp ( - kyt) + c expii( - kyt)] (7)

b (1-exp( - kyt)) + kig(l - exp (- kst))

a
cp = kscy k_(1 - exp( - kyt)) - T
1 2

(8)
where
klkZ
a=
(k= k1) (k3= ky) (9)

12



kik,

(kg = key) (k3 = ko) (10)
kik,
Cc =
(k3 - kl)(k3 - kz) (112)

The respective time dependencies are shown schematically in the following figure:
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Fig. S8. Kinetics of the ATP dephosphorylation — model calculation for c4=1 k;=0.1; k; =02,k3 =03
Experimental dependencies comply well (at least qualitatively) with the proposed model, as
shown in Fig. S9. The first-order kinetic equation was used successfully to estimate the rate
constants for the ATP disappearance in the presence of various cerium oxides (see Fig. 4 in
the main text); the respective model parameters are listed in Table S3.
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Fig. S9. Kinetics of the ATP dephosphorylation in the presence of cerium oxide annealed at 500°C. Initial concentrations of
ATP 0.002 mol/L,; 0.04 mol/l TRIS buffer with pH = 7.22. Concentrations of cerium oxide 1.0 g/100 mL (a) and 2.0 g/100

mL (b).
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Table S3. Parameters of the first-order equation (Eq.(5)) ®

A I B ¢ ] D & | e | 8B [ & [ & [ &
1 Model Louka01 (User)
| 2| Equation A*exp(k1*x)
3| Reduced 0.00166 2.00072E4 0.00162 2.82783E4 6.65758E4 8.26799E4 2.5034E-4 3.55264E4  1.06965E4
Chi-Sqr

4| Adj. R-Square 00875  0.99849 0.08777 009821 099598 000386  0.99636  0.06922 0.0689
[ 5] Value Standard Eror

B . A 0.67686 0.03806

—=(200°C K 0.02697 0.00219

8. . A 099269 0.0131

9| 300°C id 0.02494  6.83628E4

o A 0.9768 0.03773

7 [ 400 °C i 0.02789 0.00226

1 A 1.00374 0.01613

3] 300 °C K 0.03417 0.00119

. A 0.9986 0.02496

51600 °C K 0.03724 0.00206

.| . A 1.01764 0.02621

7| 700 °C K 0.02183 0.00117

. A 0.08624 0.01375

9800 °C K 001217 4.11087E4

X1 A 1.00365 0.01474

27900 °C K 0.00336  3.01467E4

21 A 0.99768 0.00793

2] 1000°C K 0.00172  1.53823E4

3 QOriginPro 8.5 (OriginLab Corp., Northampton, USA) SW was used for non-linear regression analysis, data from Fig. 4 in
the main text.

However, a more detailed inspection showed that the substrate-disappearance curves obtained
in the short-time experiments deviate somewhat from the curves predicted from the above
model. It was also found from the mass-balance that the sum of all products and reactants in
solution (as determined by HPLC) dropped to ca. 80% (in the case of the dephosphorylation
on the in-house cerium oxide) or to ca. 90% (dephosphorylation on MKN-025) after an
addition of the sorbent to the adenosine phosphate solution. This effect is even more
pronounced in the case of the AMP dephosphorylation. It was therefore postulated that some
other non-specific process, most probably a non-reactive adsorption, occurs simultaneously
with the reactive sorption described above. In this case, a generalized kinetics model involve
several equations of the Michaelis-Menten type [1]. An integration of the respective kinetic
equations gives equations containing simultaneously the In(y) and y terms

In(Ay+B)+Cy=x+D (12)

which can not be solved implicitly [2]. Under certain circumstances (for large x), the solutions
based on an approximation of the so-called Lambert W-function may be applied [3, 4]. Eq.
(12) may be approximated by a relatively simple equation [5]:

Inx - N
yem= 1= )

1+x (13)
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It was found empirically that this equation after a slight modification may be used to fit the
experimental data for the disappearance of the adenine phosphates, as is shown in the
following figure for AMP.

Inx-N
y=(1— )+Px+M
1+x

(14)
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Fig S10. Kinetic dependencies for the dephosphorylation of AMP. Experimental data fitted with the aid of the empirical
equation (Eq.(14))
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6. Interactions of cerium oxide with NAD
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Fig. S11. Decomposition of NAD in the presence of cerium oxide annealed at 500°C. Initial concentrations of NAD
0.002 mol/L,; 0.04 mol/l TRIS buffer with pH = 7.22. Concentrations of cerium oxide 2.0 g/100 mL. a) Model mixture; b)

reaction mixture at the beginning of the experiment (t = 0); ¢) Reaction mixture after 6 hours of agitation. Peak identification:

1- nicotinamide; 2 — adenosine; 3 — NAD. Chromatographic conditions: Column YMC-TRIART DIOL-HILIC, 150 x 4.6
mm, 5 pm; mobile phase acetonitrile/ammonium acetate 0.01 mol/L, pH 5.01 (75/25, v/v); detection UV 240 nm.
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