Supporting Information

Preparation of α -Fe₂O₃/polyacrylonitrile nanofiber mat as effective lead adsorbent

Jiao Chang¹[†], Jianqiang Wang¹[†], Jin Qu¹*, Yan Vivian Li², Lijing Ma¹, Lifang

Wang¹, Xiuxing Wang¹, Kai Pan^{1*}

¹ Key laboratory of carbon fiber and functional polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China.

² Department of Design and Merchandising, Colorado State University, School of Biomedical Engineering, Fort Collins, Colorado, 80523, America

Corresponding Author's Email: pankai@mail.buct.edu.cn, qujin@mail.buct.edu.cn

In order to further investigate the morphology and density of the α -Fe₂O₃ on PAN nanofiber mats, we continued to adjust the pH value of the FeCl₃ solution to obtain the nanofiber mats. As shown in the FigS1a, there are only a few α -Fe₂O₃ particles on the surface of the nanofiber when the pH value is 3.6. Obviously, when the pH value increased to 3.8, the surface of the PAN nanofiber is similar with the S_{2.0}. That is to

say, we can get α -Fe₂O₃ nanoparticles coated on PAN when the pH ranging from 2.0 to 3.8. So it can conclude that excess acid or alkali is not conductive to the formation of the α -Fe₂O₃.

Fig.S1 SEM images of α -Fe₂O₃/PAN nanofiber mats with the different pH values of FeCl₃ 3.6 (a); 3.8 (b).

Fig.S2 XRD patterns of α -Fe₂O₃/PAN nanofiber mats: S_{2.0} (a); S_{2.4} (b); S_{3.0} (c); S_{3.4} (d).

Fig.S3 N₂ adsorption-desorption isothermals of the α -Fe₂O₃/PAN nanofiber mats

The Brunauer-Emmett-Teller (BET) surface area of PAN and the α -Fe₂O₃/PAN nanofiber mats are shown in Fig S3. According to previous reports ^{1,2}, the surface area of the electrospinning nanofibers are usually about 3-5m²/g. In this paper, the surface area of PAN and the α -Fe₂O₃/PAN nanofiber mats was calculated to be 8.38 m²/g and 9.84 m²/g, respectively, indicating the α -Fe₂O₃ coated PAN nanofiber give the adsorbent a higher surface area. In addition, the surface of α -Fe₂O₃ has a quantity of Fe-OH, which benefit for the adsorption.

References

S.P. Wen, M.L. Liang, R. Zou, Z.J. Wang, D.M. Yue and L. Liu, *RSC Adv.*, 2015, 5, 41513-41519.
X.Y. Tang, Y.X. Yu, Ceram. Int., 2015, 41, 9232-9238.