Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2016

1	Supporting Information
2	for
3	Transformation Kinetics of Silver Nanoparticles and Silver
4	Ions in Aquatic Environments Revealed by Double Stable
5	Isotope Labeling
6	Sujuan Yu, Yongguang Yin, Xiaoxia Zhou, Lijie Dong, Jingfu Liu*
7	
8	State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-
9	Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
10	
11	
12	
13	
14	Total pages: 6
15	Total figures: 4
16	Total tables: 2
17	* Corresponding author: E-mail: jfliu@rcees.ac.cn

20 Figure S1. TEM image (A) and the size distribution (B) of the synthesized ¹⁰⁷AgNPs.

Figure S2. UV-vis absorption spectra of AgNPs in the dark (A) and light (B), and TEM image of
AgNPs (C) after solar irradiation for 4 h. A mixture of 1 mg/L ¹⁰⁷AgNPs and 1 mg/L ¹⁰⁹Ag⁺ in pure
water was treated at pH 7.4 and 30 °C.

Figure S3. TEM image of AgNPs in the dark after 24 h (A), and HRTEM image (B) and EDS
analysis (C) of the newly formed AgNPs in the presence of SRHA. A mixture of 1 mg/L ¹⁰⁷AgNPs,
1 mg/L ¹⁰⁹Ag⁺ and 5 mg C/L SRHA was treated at pH 7.4 and 30 °C.

Figure S4. Fraction of dissolved ¹⁰⁹Ag⁺ and ion release kinetics of ¹⁰⁷AgNPs over time at different temperatures. Fraction of dissolved ¹⁰⁹Ag⁺ *verse* time at 50 °C (A), ion release kinetics of ¹⁰⁷AgNPs at 50 °C (B), concentration change of dissolved ¹⁰⁹Ag⁺ at 6 °C (C), ion release kinetics of ¹⁰⁷AgNPs at 6 °C (D). A mixture of 1 mg/L ¹⁰⁷AgNPs, 1 mg/L ¹⁰⁹Ag⁺ and 5 mg C/L SRHA was treated at pH 7.4. Error bars in Figure C and D represent the standard deviation for three independent measurements.

Reaction condition	k/h ⁻¹ (Light)	<i>k</i> /h ⁻¹ (Dark)			
without SRHA, pH 7.4, 30 ° C	-	-			
5 mg C/L SRHA, pH 5.6, 30 ° C	0.0025	0.0015			
5 mg C/L SRHA, pH 7.4, 30 ° C	0.0051	0.0017			
5 mg C/L SRHA, pH 8.5, 30 ° C	0.0098	0.0051			
5 mg C/L SRHA, pH 7.4, 50 ° C	0.0063	0.0022			
5 mg C/L SRHA, pH 7.4, 6 ° C	-	-			
5 mg C/L SRHA, pH 7.4, 30 ° C, with Ca ²⁺ and Mg ²⁺	0.0048	0.0017			
-: The reduction of ¹⁰⁹ Ag ⁺ was not obvious.					

Table S2 Com	narison of	`the	oxidation rate	e constant k o	of ¹⁰⁷ AgNPs
14010 02 0011	pui ison oi	unc	omaailon raid	constant n	

Reaction condition	k/h^{-1} (Light)	<i>k</i> /h ⁻¹ (Dark)	
without SRHA, pH 7.4,	0.0366 (the first 12 h)	0.0078	
30 ° C	0.0081(after 12 h)		