Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2016

## **Supporting Information**

## For

## One-Pot High Yield Harvest of Ag Nanoparticles Embedded Biochar Hybrid

## Materials from Waste Biomass for Catalytic Cr(VI) Reduction

Wu-Jun Liu, LiLi Ling, Yuan-Ying Wang, Hui He, Yan-Rong He, Han-Qing Yu and

Hong Jiang\*

CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry,

University of Science and Technology of China, Hefei 230026, China

|                 | C (wt.%) | H (wt.%) | N (wt.%) | O (wt.%) |
|-----------------|----------|----------|----------|----------|
| Biochar         | 79.9     | 3.1      | 0.4      | 16.1     |
| Ag@biochar      | 81.0     | 2.6      | 0.7      | 14.3     |
| Spent Ag@bichar | 77.0     | 2.8      | 0.3      | 16.2     |

**Table S1.** The elemental compositions (C, H, N, O) of the pure biochar, Ag@biochar, and spent Ag@bichar



**Fig. S1.** The yields of biochar, bio-oil, and gas during the pyrolysis of the Ag polluted biomass, as well as the Ag contents in the biochar and bio-oil.



Fig. S2. The TEM image of the Ag@biochar synthesized from NaBH<sub>4</sub> reduction, and

| the | Ag | particle | size | distribution |
|-----|----|----------|------|--------------|
| une | 5  | partiere | 0120 | aistiioatio  |



Fig. S3. The SEM-EDS of the Ag@biochar-600 and Ag@cellulose-biochar-600 samples



**Fig. S4.** Comparison of the catalytic performance of the biochar derived from biomass and cellulose and biochar supported Ag NPs.



**Fig. S5.** Comparison of the catalytic performance of different biochar support Ag NPs.