Supporting information for:

Inorganic Tin Aluminophosphate Nanocomposite for Reductive Separation of Pertechnetate

Tatiana G. Levitskaia^{*a*}, Sayandev Chatterjee,^{*a*} Natasha K. Pence,^{*a*} Jesus Romero,^{*a*} Tamas Varga,^{*b*} Mark H. Engelhard,^{*b*} Yingge Du,^{*b*} Libor Kovarik,^{*b*} Bruce W. Arey,^{*a*} Mark E. Bowden^{*b*} and Eric D. Walter^{*b*}

^a Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, United States.

^b Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States

Figure S1. IR spectra of the **Sn-Al-PO**₄ composite (black trace) before TcO_4^- exposure and (red trace) after 24 hour exposure to TcO_4^- .

Figure S2. XRD patterns of the Sn-Al-PO₄ composite before and after exposure to an aqueous solution of TcO_4 -

Figure S3. Representative elemental distribution in the amorphous matrix the 24 hour TcO_4 -treated Sn-Al-PO₄ composite.

Figure S4. Representative elemental distribution in the crystalline fibers for the 24 hour TcO_4 -treated Sn-Al-PO₄ composite.

Figure S5. (A) EPR spectrum of Tc-loaded **Sn-Al-PO**₄ composite at 2.5 K (blue trace) and its first derivative (red trace). **(B)** Overlay of the first derivative of the experimental spectrum of Tc-loaded **Sn-Al-PO**₄ composite (red trace) with the spectrum simulated using the parameters reported for Tc(IV) in the SnO₂ cassiterite structure.¹

References:

(1) Pieper, H. H.; Schwochau, K. J Chem Phys **1975**, 63, 4716.