Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

Galvanic-like cells produced by negative charge nonuniformity of lattice oxygen on *d*-TiCuAl-SiO₂ nanospheres for enhancement of Fenton-catalytic efficiency

Lai Lyu^{1,2}, Lili Zhang¹, Chun Hu^{1,2}*

¹Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

²University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author Tel: +86-10-62849628; fax: +86-10-62923541;

e-mail: huchun@rcees.ac.cn

The Journal: Environmental Science: Nano

Pages: 18, Figures: 7, Tables: 4

Experimental

Chemicals and materials: BPA (\geq 99%) was obtained from Acros (Geel, Belgium). Cetylpyridinium bromide hydrate (CBH, 98%), catalase from bovine liver (2000-5000 units/mg protein), *N*,*N*-diethyl-*p*-phenylenediamine sulfate (DPD, 98%) and horseradish peroxidase (POD) were purchased from Sigma-Aldrich (St. Louis, United States). The reagent 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) used as the spin trapping agent in the electron paramagnetic resonance studies (EPR), was purchased from the Bioanalytical Lab (Sarasota, FL). Cyclohexane (\geq 99.5%), n-pentanol (\geq 98.5%), tetraethyl orthosilicate (TEOS, 99%), hydrogen peroxide (H₂O₂, 30%, w/w) and all the other chemicals were purchased from Sinopharm Chemical Reagent Co. (Shanghai, China). Deionized water was used throughout this study.

Characterization: Extended X-ray absorption fine structure (EXAFS) spectra were recorded at the beam lines BL14W1 of the Shanghai Synchrotron Radiation Facility (SSRF), China. Cu foil, CuO and Cu₂O were used as references. The samples were sealed between two layers of adhesive PVC tape. The Cu K-edge (8.979 keV) EXAFS spectra of the samples were collected under ambient conditions in transmission mode. The parameters for EXAFS measurements, data collection modes and error calculations were all controlled according to guidelines set by the International XAFS Society Standards and Criteria Committee. The EXAFS data were analyzed by the Athena program. EXAFS oscillations $\chi(k)$ were extracted using spline smoothing and weighted by k^3 to compensate for the diminishing amplitude in the high *k* range. The filtered k^3 weighted $\chi(k)$ were Fourier transformed (FT) to *R* space in the *k* range of 2 to 11 Å⁻¹. A nonlinear least-squares algorithm was applied to the EXAFS fitting with phase correlation in the *R* space between 1 and 4 Å for the Cu K-edge.

parameters of the samples were obtained via curve fitting procedures using the FEFF8.4 code.¹

Fenton-catalytic performance measurement: The total carbon (TC) and inorganic carbon (IC) were determined by a Shimadzu TOC-V_{CPH} analyzer using high-temperature combustion, and the total organic carbon (TOC) was automatically calculated by TC minus IC. The concentration of H_2O_2 was determined using a DPD method, as previously reported in literature.² The leaching of metallic ions during reaction were analyzed by ICP-OES on an OPTIMA 2000 (Perkin Elmer, U.S.A.). The reusability of *d*-TiCuAl-SiO₂ Ns was tested by recovering the catalyst through filtration. Typically, after one Fenton reaction, the catalyst was filtered out using a 0.22-µm Millipore filter. The remaining solid was washed with deionized water 5 times under neutral conditions. Then the solid sample was dried at 70 °C for 6 h and reused in the following cycle.

GC-MS analysis: The sample for GC-MS analysis was prepared using the following procedure. The *d*-TiCuAl-SiO₂ Ns suspension at the Fenton reaction time of 15 min was filtered. The solid particles and the solution were collected and evaporated using a freeze-drying method. Then, the residue was dissolved in 4 mL of dichloromethane. After the solvent was dehydrated by anhydrous sodium sulfate, trimethylsilylation was carried out at 60 °C for 30 min using 200 μ L of BSTFA (N,O-bis(trimethylsilyl)trifluoroacetamide). The precipitate was separated by centrifugation prior to chromatographic analysis. GC-MS analysis was carried out on an Agilent 6890GC/5973MSD with a DB-5 MScapillary column. The GC oven temperature

program was as follows: 60 °C held for 2 min followed by linear temperature gradient of 6 °C min⁻¹ to 280°C, which was held for 5 min.

Reactive oxygen species (ROS) detection: To detect the ROS, electron spin resonance (ESR) spectra measurement was performed. The BPA-adsorbed samples and the used samples after BPA disappearing were prepared by the following procedure. 0.8 g L⁻¹ catalyst was added to a 0.1 mM BPA aqueous solution. The suspension was stirred at room temperature for approximately 30 min to establish adsorption/desorption equilibrium between the pollutant and the catalyst. Next, 12 mM H₂O₂ was added to the above suspension under continuous stirring, and 25 mL of the suspension was collected at the adsorption/desorption equilibrium point for all of the suspensions, as well as at 60 min after adding H₂O₂ for *d*-TiCuAl-SiO₂ Ns suspension and 180 min after adding H₂O₂ for *d*-Cu-SiO₂ Ns and *d*-CuAl-SiO₂ Ns suspensions followed by filtration. The solid particles were collected and dried at approximately 50 °C to form the powder samples. In a typical procedure, 0.01 g of the prepared powder sample was added to 1 mL of water or methanol. Then, 100 μ L of the above suspension, 10 μ L of BMPO (250 mM) and 10 μ L of H₂O₂ (30%, w/w) were mixed and held for 5 min, and then the EPR spectra were recorded on a Bruker A300-10/12 EPR spectrometer using BMPO as a spin trap agent at room temperature.

Fig. S1. Schematic diagrams for a) classical homogeneous Fenton reactions and b) heterogeneous Fenton process.

Fig. S2. The energy dispersive spectroscopy (EDS) analysis results of *d*-TiCuAl-SO₂ Ns.

Fig. S3. Effect of (a) catalyst concentration and (b) H_2O_2 concentration on BPA degradation in the *d*-TiCuAl-SiO₂ Ns suspension. Reaction conditions: initial pH 7, initial BPA concentration 23 mg L⁻¹, initial H_2O_2 concentration 12 mM for a) and catalyst concentration 0.8 g L⁻¹ for b).

	BET	Cu content/wt%		Al content/wt%		Ti content/wt%	
sample	Surface -	total	surface	total	surface	total	surface
<i>d</i> -Cu-SiO ₂ Ns	305.1	1.20	0.58	_	_	_	_
<i>d</i> -CuAl-SO ₂ Ns	309.5	1.13	0.71	0.33	0.08	-	_
<i>d</i> -TiCuAl-SO ₂ Ns	483.5	1.18	0.90	0.35	0	0.31	0.29

 Table S1 BET surface area and metal content information of various samples.

Fig. S4. XRD of the various sample.

Entry	Catalyst	BPA	H ₂ O ₂	Conditions	Reaction	Removal	Utilization	Ref.
		Conc.	dose		time	efficiency	efficiency	
1	Fe ₃ O ₄	0.1	20	рН 5	120	19	5.2	3
	NPs							
2	Cu ₂ O	0.1	20	рН 5	120	60	19.6	3
	MPs							
3	CuFeO ₂	0.1	20	рН 5	120	99.2	57.8	3
	MPs							
4	Fe ₃ O ₄	~0.1	160	рН 3	480	100		4
	MNPs			ultrasonic				
5	BiFeO ₃	0.1	10	рН 5	120	20.4		5
				303 K				
6	d-	0.1	12	ambient	60	100	80.6	This
	CuTiAl-			conditions				work
7	Au/SRAC	~0.5	~16	рН 3	720	89		6
				313 K				
8	Au/Fe ₂ O ₃	~0.5	~16	рН 3	720	10.1		6
				313 K				
9	Au-	~0.5	~16	рН 3	720	6.6		6
	Fe_2O_3/Al_2			313 K				
10	d-	0.5	20	ambient	150	98.5	88.4	This
	CuTiAl-			conditions				work

Table S2. Comparison of the degradation of BPA by heterogeneous Fenton methods.

Fig. S5. Kinetic curves of BPA degradation in various suspensions (Reaction conditions: 0.1 mmol L⁻¹ (23 mg L⁻¹) BPA, 12 mmol L⁻¹ H₂O₂, 0.8 g L⁻¹ catalyst, initial pH 7, room temperature).

Fig. S6. (a) TEM image and (b) SEM image of *d*-TiCuAl-SiO₂ Ns after the Fenton reaction of 8 times.

Calculation of the Utilization Efficiency of H_2O_2 . The complete mineralization of one mole of BPA will theoretically consume 36 moles of H_2O_2 (eqs. S1).

$$C_{15}H_{16}O_2 + 36H_2O_2 \rightarrow 15CO_2 + 44H_2O$$
 (S1)

The utilization efficiency of H_2O_2 (η)⁷ is defined as the ratio of the stoichiometric H_2O_2 consumption ([ΔH_2O_2]_s) for the mineralization of pollutants to the actual H_2O_2 consumption ([ΔH_2O_2]_s) in the Fenton-like reaction and is expressed in eq. S2:

$$\eta = [\Delta H_2 O_2]_S / [\Delta H_2 O_2]_A$$
(S2)

By measuring the TOC change in the pollutant solutions, the amounts of the mineralized contaminants were obtained, and the value of $[\Delta H_2O_2]_S$ was calculated. The actual H_2O_2 consumption ($[\Delta H_2O_2]_A$) at different reaction times was measured using the DPD method. The detailed data for $[\Delta H_2O_2]_A$ and $[\Delta H_2O_2]_S$ are presented in **Table S3**.

Table S3. Actual H_2O_2 consumption ($[\Delta H_2O_2]_A$) and stoichiometric H_2O_2 consumption ($[\Delta H_2O_2]_S$) for mineralizing BPA during the Fenton reaction.

< >		•
101	d = 1 $f = 1$ $A = S (A)$ No one	nongion
141	u - $1 \cup u$ A 1 - $O \cup D$ 1 $NS S u S$	5001151011
()		

Reaction time/min	BPA (0.1 mM)			
Reaction time/min	$[\Delta H_2O_2]_A/mM$	$[\Delta H_2 O_2]_S/mM$		
0	0	0		
15	0.75	0.67		
30	1.39	1.18		
60	2.02	1.63		
90	2.70	2.00		
120	3.49	2.28		
150	3.95	2.41		
180	4.29	2.54		

		10 110 0 11	•
(b) <i>d</i> -CuAl-SiO ₂ Ns	suspension
	~		000000000000000000000000000000000000000

Reaction time/min	BPA (0.1 mM)			
Reaction time/min	$[\Delta H_2 O_2]_A/mM$	$[\Delta H_2 O_2]_8/mM$		
0	0	0		
15	0.55	0.51		
30	1.16	1.02		
60	1.63	1.38		
90	2.33	1.66		
120	3.05	1.85		
150	4.29	2.02		
180	5.82	2.14		

(c) d-Cu-SiO₂ Ns suspension

Reaction time/min	BPA (0.1 mM)			
Reaction time/min	$[\Delta H_2 O_2]_A/mM$	$[\Delta H_2 O_2]_S/mM$		
0	0	0		
15	0.77	0.60		
30	1.34	1.00		
60	2.14	1.42		
90	2.89	1.62		
120	3.46	1.68		
150	4.47	1.80		
180	6.36	1.89		

Retention time/min	Product	Molecular structure
	Main products on the surface of the	catalyst
6.62	ethylene glycol	но
8.17	phenol	ОН
8.32	lactic acid	O HO
8.67	pyruvic acid	HO O
12.72	1,2-propanediol	OH HO
13.44	glycerine	НО ОН ОН
13.81	4-isopropylphenol)—————————————————————————————————————
14.15	4-hydroxybenzoic acid	о он
15.37	maleic acid	HO O O→OH
16.63	hydroquinone	но-Он
17.76	2,4-dihydroxybenzoic acid	ОН НО ОН
18.13	4-hydroxyacetophenone	О-ОН
31.00	bisphenol A	но-СОн

Table S4. Main products during the Fenton-catalytic degradation of BPA in the *d*-TiCuAl-SiO₂ Ns suspension at the reaction time of 15 min, as detected by GC-MS.

Main products in the aqueous solution				
6.62	ethylene glycol	но ОН		
8.32	lactic acid	O HO		
8.66	pyruvic acid	O HO		
11.18	propanoic acid	HO		
12.72	1,2-propanediol	OH HO		
13.45	glycerine	НО ОН ОН		
18.14	4-hydroxyacetophenone	ОН		
31.01	bisphenol A	но-Он		

Fig. S7. Possible degradation pathways of BPA under the attack of hydroxyl radicals in the d-TiCuAl-SiO₂ Ns suspension with H₂O₂.

References

- 1 A. L. Ankudinov, B. Ravel, J. J. Rehr and S. D. Conradson, *Phys. Rev. B*, 1998, 7565-7576.
- 2 H. Bader, V. Sturzenegger and J. Hoigne, Water Res., 1988, 22, 1109-1115.
- 3 X. Zhang, Y. Ding, H. Tang, X. Han, L. Zhu and N. Wang, *Chem. Eng. J.*, 2014, **236**, 251-262.
- 4 R. Huang, Z. Fang, X. Yan and W. Cheng, Chem. Eng. J., 2012, 197, 242-249.
- 5 N. Wang, L. Zhu, M. Lei, Y. She, M. Cao and H. Tang, *ACS Catal.*, 2011, **1**, 1193-1202.
- 6 X. Yang, P. -F. Tian, C. Zhang, Y. -Q. Deng, J. Xu, J. Gong and Y. -F. Han, *Appl. Catal. B: Environ.*, 2013, **134-135**, 145-152.
- 7 W. Luo, L. H. Zhu, N. Wang, H. Q. Tang, M. J. Cao and Y. B. She, *Environ. Sci. Technol.*, 2010, **44**, 1786-1791.