## Differential dissolution and toxicity of surface functionalized silver nanoparticles in small-scale microcosms: impacts of community complexity

Fan Wu<sup>1</sup>, Bryan J. Harper<sup>2</sup>, Stacey L. Harper<sup>1,2,3\*</sup>

<sup>1</sup>School of Chemical, Biological and Environmental Engineering, Oregon State University,

Corvallis, Oregon, United States;

<sup>2</sup>Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States;

<sup>3</sup>Oregon Nanoscience and Microtechnologies Institute, Eugene, Oregon, United States.

**Supporting Information:** 

## 15 pages, 5 tables, 14 figures

\*Corresponding author: Stacey Harper: <u>Stacey.Harper@oregonstate.edu</u>

| Surface functionalization                                                   | PEG; Silanol; Amine terminated Silica |                        |  |  |
|-----------------------------------------------------------------------------|---------------------------------------|------------------------|--|--|
| Shape                                                                       | Spherica                              | l                      |  |  |
|                                                                             | PEG-Ag                                | 50 - 220 nm            |  |  |
| Size distribution (minimum - maximum)                                       | Si-Ag                                 | 68 - 295 nm            |  |  |
|                                                                             | Ami-Si-Ag                             | 68 - 615 nm            |  |  |
|                                                                             | PEG-Ag                                | 96.6                   |  |  |
| Initial hydrodynamic diameter (mean)                                        | Si-Ag                                 | 136.5                  |  |  |
|                                                                             | Ami-Si-Ag                             | 200.2                  |  |  |
|                                                                             | PEG-Ag                                | 5.9E+9<br>particles/ml |  |  |
| Particle concentration from the manufacturer                                |                                       | 5.1E+9                 |  |  |
|                                                                             | Sî-Ag                                 | particles/ml           |  |  |
|                                                                             | Ami Si Ag                             | 5.9E+9                 |  |  |
|                                                                             |                                       |                        |  |  |
| Flastrankovstia makility (initialy 0 kayn, finaly 120 kayna)                | PEG-Ag                                | -0.2870.199            |  |  |
| Electrophoretic mobility (Initial: 0 hour - Inal: 120 hours)                | SI-Ag                                 | -1.193 - 1.04          |  |  |
|                                                                             | Ami-Si-Ag 0.992 - 2.213               |                        |  |  |
| Model used to compute the zeta potential                                    | Smoluchowski e                        | quation                |  |  |
| рН                                                                          | 7.2                                   |                        |  |  |
| Ionic strength                                                              | 0.01 mol/L                            |                        |  |  |
| Ionic composition                                                           | Made according to reference 36        |                        |  |  |
| Temperature                                                                 | 25 °C                                 |                        |  |  |
| Viscosity                                                                   | 0.8872 mPa                            |                        |  |  |
| Macromolecules/NOM                                                          | None                                  |                        |  |  |
| Duration of measurement                                                     | 4 minutes                             |                        |  |  |
| Applied voltage                                                             | 148 V                                 |                        |  |  |
| Number of instrument measurements made and averaged<br>to determine each ZP | 12                                    |                        |  |  |
| Total number of replicate measurements                                      | 3                                     |                        |  |  |

Table S1. Metadata associated with zeta potential measurements.

Table S2. AgNP digestion recovery rates.

| NP type   | Recovery rate (%) | Standard deviation (%) |  |  |  |  |  |
|-----------|-------------------|------------------------|--|--|--|--|--|
|           | 105.4             | E 1                    |  |  |  |  |  |
| PEG-Ag    | 105.4             | 5.1                    |  |  |  |  |  |
| Si-Ag     | 104.2             | 2.6                    |  |  |  |  |  |
|           |                   |                        |  |  |  |  |  |
| Ami-Si-Ag | 104.1             | 2.3                    |  |  |  |  |  |
|           |                   |                        |  |  |  |  |  |

Table S3. AgNP hydrodynamic diameters (HDD) and the corresponding polydispersity index (PDI) measured every 24 hours throughout the experimental period (± indicates the standard error of three sample replicates).

|      | PEG-Ag (MQW) |         | EG-Ag (MQW) PEG-Ag (NCM) |         | Si-Ag (MQW) Si-Ag (NCM) |         | Ami-Si-Ag   |         | Ami-Si-Ag |         |       |         |
|------|--------------|---------|--------------------------|---------|-------------------------|---------|-------------|---------|-----------|---------|-------|---------|
|      |              |         |                          |         |                         |         | Si-Ag (NCM) |         | (MQW)     |         | (NCM) |         |
| Time | HDD          |         | HDD                      |         | HDD                     |         | HDD         |         | HDD       |         | HDD   |         |
| (hr) | (nm)         | PDI     | (nm)                     | PDI     | (nm)                    | PDI     | (nm)        | PDI     | (nm)      | PDI     | (nm)  | PDI     |
|      |              |         |                          |         |                         |         |             |         |           |         |       |         |
|      | 97.7 ±       | 0.058 ± | 96.6 ±                   | 0.041 ± | 132.2 ±                 | 0.014 ± | 136.5       | 0.033 ± | 202.5     | 0.152 ± | 200.2 | 0.162 ± |
| 0    | 0.17         | 0.006   | 0.15                     | 0.007   | 0.5                     | 0.01    | ± 1.1       | 0.009   | ± 2       | 0.019   | ± 1.7 | 0.005   |
|      |              |         |                          |         |                         |         |             |         |           |         |       |         |
|      | 98.2 ±       | 0.063 ± | 98.8 ±                   | 0.053 ± | 131 ±                   | 0.037 ± | 138.8       | 0.078 ± | 211.9     | 0.128 ± | 214.1 | 0.161 ± |
| 24   | 0.65         | 0.008   | 0.32                     | 0.002   | 1.7                     | 0.002   | ± 0.9       | 0.008   | ± 1.1     | 0.023   | ± 2   | 0.017   |
|      |              |         |                          |         |                         |         |             |         |           |         |       |         |
|      | 98.3 ±       | 0.058 ± | 99.7 ±                   | 0.058 ± | 124.1 ±                 | 0.044 ± | 134.4       | 0.107 ± | 199.7     | 0.171 ± | 222.1 | 0.176 ± |
| 48   | 0.32         | 0.011   | 0.61                     | 0.001   | 0.67                    | 0.01    | ± 2.4       | 0.014   | ± 1.23    | 0.009   | ± 2.1 | 0.013   |
|      |              |         |                          |         |                         |         |             |         |           |         |       |         |
|      | 98.8 ±       | 0.061 ± | 101.1                    | 0.06 ±  | 120 ±                   | 0.051 ± | 142.7       | 0.173 ± | 162 ±     | 0.184 ± | 209.5 | 0.174 ± |
| 72   | 0.56         | 0.004   | ± 0.25                   | 0.004   | 1.41                    | 0.007   | ± 0.76      | 0.012   | 0.33      | 0.01    | ± 1.5 | 0.011   |
|      |              |         |                          |         |                         |         |             |         |           |         |       |         |
|      | 97.1 ±       | 0.07 ±  | 100.9                    | 0.045 ± | 119.4 ±                 | 0.07 ±  | 131 ±       | 0.106 ± | 135 ±     | 0.155 ± | 220 ± | 0.197 ± |
| 96   | 0.51         | 0.005   | ± 0.82                   | 0.005   | 1.02                    | 0.01    | 0.76        | 0.017   | 0.9       | 0.011   | 2.6   | 0.011   |
|      |              |         |                          |         |                         |         |             |         |           |         |       |         |
|      | 97.1 ±       | 0.062 ± | 99.5 ±                   | 0.058 ± | 117.1 ±                 | 0.045 ± | 138.4       | 0.12 ±  | 113.3     | 0.149 ± | 208.4 | 0.19 ±  |
| 120  | 0.35         | 0.01    | 0.31                     | 0.016   | 0.92                    | 0.004   | ± 1.02      | 0.012   | ± 0.52    | 0.013   | ± 2.3 | 0.021   |
|      |              |         |                          |         |                         |         |             |         |           |         |       |         |

Table S4. Theoretical Ag speciation calculated with Visual-MINTEQ assuming equilibrium in NCM.  $AgCl_{(s)}$  highlight in red indicates the percentage of precipitates that can be formed at the modeled concentrations.

| Input Ag+ cor | ncentration | n (59 μg/L) | Input Ag+ co          | Ag+ concentration (60 μg/L) |         |  |  |
|---------------|-------------|-------------|-----------------------|-----------------------------|---------|--|--|
| Ag Speciation | μg Ag/L     | % Total     | Ag Speciation µg Ag/L |                             | % Total |  |  |
| Ag(OH)2-      | 1.25E-09    | 0%          | Ag(OH)2-              | 1.26E-09                    | 0%      |  |  |
| Ag+1          | 5.02E+00    | 9%          | Ag+1                  | 5.07E+00                    | 8%      |  |  |
| Ag2MoO4 (aq)  | 4.27E-14    | 0%          | Ag2MoO4 (aq)          | 4.36E-14                    | 0%      |  |  |
| AgCl (aq)     | 3.88E+01    | 66%         | AgCl (aq)             | 3.92E+01                    | 65%     |  |  |
| AgCl2-        | 1.52E+01    | 26%         | AgCl2-                | 1.54E+01                    | 26%     |  |  |
| AgCl3-2       | 7.23E-02    | 0%          | AgCl3-2               | 7.31E-02                    | 0%      |  |  |
| AgEDTA-3      | 2.75E-07    | 0%          | AgEDTA-3              | 2.78E-07                    | 0%      |  |  |
| AgH2BO3 (aq)  | 9.89E-06    | 0%          | AgH2BO3 (aq)          | 9.99E-06                    | 0%      |  |  |
| AgHEDTA-2     | 5.53E-08    | 0%          | AgHEDTA-2             | 5.58E-08                    | 0%      |  |  |
| AgNO3 (aq)    | 1.67E-03    | 0%          | AgNO3 (aq)            | 1.69E-03                    | 0%      |  |  |
| AgOH (aq)     | 7.34E-05    | 0%          | AgOH (aq)             | 7.42E-05                    | 0%      |  |  |
| AgSO4-        | 6.33E-03    | 0%          | AgSO4-                | 6.39E-03                    | 0%      |  |  |
| AgCl (s)      | 0.00E+00    | 0%          | AgCl (s)              | 4.13E-01                    | 1%      |  |  |
| Total         | 59.07       | 100%        | Total                 | 60.07                       | 100%    |  |  |

a) AgCl<sub>(s)</sub> starts to form when the input Ag<sup>+</sup> concentration is above 59  $\mu$ g L<sup>-1</sup>.

b) Ag speciation calculated using the highest abiotic dissolved Ag concentration measured in NCM (Figure 2) for each AgNP.

| PEG-A         | gNP (24 με | g/L)    | Si-Ag         | NP (53 μg/ | ′L)     | Ami-Si-       | ıg/L)    |         |
|---------------|------------|---------|---------------|------------|---------|---------------|----------|---------|
| Ag Speciation | μg Ag/L    | % Total | Ag Speciation | μg Ag/L    | % Total | Ag Speciation | μg Ag/L  | % Total |
| Ag(OH)2-      | 5.08E-10   | 0%      | Ag(OH)2-      | 1.12E-09   | 0%      | Ag(OH)2-      | 4.66E-10 | 0%      |
| Ag+1          | 2.04E+00   | 9%      | Ag+1          | 4.51E+00   | 9%      | Ag+1          | 1.87E+00 | 9%      |
| Ag2MoO4 (aq)  | 7.07E-15   | 0%      | Ag2MoO4 (aq)  | 3.45E-14   | 0%      | Ag2MoO4 (aq)  | 5.94E-15 | 0%      |
| AgCl (aq)     | 1.58E+01   | 66%     | AgCl (aq)     | 3.48E+01   | 66%     | AgCl (aq)     | 1.45E+01 | 66%     |
| AgCl2-        | 6.18E+00   | 26%     | AgCl2-        | 1.37E+01   | 26%     | AgCl2-        | 5.67E+00 | 26%     |
| AgCl3-2       | 2.94E-02   | 0%      | AgCl3-2       | 6.50E-02   | 0%      | AgCl3-2       | 2.70E-02 | 0%      |
| AgEDTA-3      | 1.12E-07   | 0%      | AgEDTA-3      | 2.47E-07   | 0%      | AgEDTA-3      | 1.02E-07 | 0%      |
| AgH2BO3 (aq)  | 4.02E-06   | 0%      | AgH2BO3 (aq)  | 8.88E-06   | 0%      | AgH2BO3 (aq)  | 3.69E-06 | 0%      |
| AgHEDTA-2     | 2.25E-08   | 0%      | AgHEDTA-2     | 4.97E-08   | 0%      | AgHEDTA-2     | 2.06E-08 | 0%      |
| AgNO3 (aq)    | 6.80E-04   | 0%      | AgNO3 (aq)    | 1.50E-03   | 0%      | AgNO3 (aq)    | 6.24E-04 | 0%      |
| AgOH (aq)     | 2.99E-05   | 0%      | AgOH (aq)     | 6.60E-05   | 0%      | AgOH (aq)     | 2.74E-05 | 0%      |
| AgSO4-        | 2.57E-03   | 0%      | AgSO4-        | 5.68E-03   | 0%      | AgSO4-        | 2.36E-03 | 0%      |
| AgCl (s)      | 0.00E+00   | 0%      | AgCl (s)      | 0.00E+00   | 0%      | AgCl (s)      | 0.00E+00 | 0%      |
| Total         | 24.03      | 100%    | Total         | 53.07      | 100%    | Total         | 22.03    | 100%    |

Table S5. Theoretical Ag speciation calculated with Visual-MINTEQ using measured dissolved silver concentrations in the presence of oprganisms for each type of AgNP in NCM at each exposure concentration (Figure 3). AgCl<sub>(s)</sub> highlight in red indicates the percentage of precipitates that can be formed at the modeled concentrations.

| PEG-Ag (Exposure con. 100 μg/L) |                      |                        | PEG-Ag (Exp                         | oosure con. 10 | )00 μg/L)               | PEG-Ag (Exposure con. 5000 μg/L)                                                |                           |                        |  |
|---------------------------------|----------------------|------------------------|-------------------------------------|----------------|-------------------------|---------------------------------------------------------------------------------|---------------------------|------------------------|--|
| Dissolved Ag                    | measured in NO       | C (2.1 μg/L)           | Dissolved Ag me                     | easured in NC  | (132.9 µg/L)            | Dissolved Ag m                                                                  | easured in NC (9          | 06.2 μg/L)             |  |
| Ag Speciation                   | Mass (µg/L)          | % Total                | Ag Speciation                       | Mass (µg/L)    | % Total                 | Ag Speciation                                                                   | Ag Speciation Mass (µg/L) |                        |  |
| Ag(OH)2-                        | 4.36E-11             | 0%                     | Ag(OH)2-                            | 1.26E-09       | 0%                      | Ag(OH)2-                                                                        | 1.26E-09                  | 0%                     |  |
| Ag+1                            | 1.75E-01             | 9%                     | Ag+1                                | 5.07E+00       | 4%                      | Ag+1                                                                            | 5.08E+00                  | 1%                     |  |
| Ag2MoO4 (ag)                    | 5.21E-17             | 0%                     | Ag2MoO4 (ag)                        | 4.36E-14       | 0%                      | Ag2MoO4 (ag)                                                                    | 4.38E-14                  | 0%                     |  |
| AgCl (ag)                       | 1.35E+00             | 66%                    | AgCl (ag)                           | 3.92E+01       | 29%                     | AgCl (ag)                                                                       | 3.92E+01                  | 4%                     |  |
| AgCl2-                          | 5.31E-01             | 26%                    | AgCl2-                              | 1.54E+01       | 12%                     | AgCl2-                                                                          | 1.53E+01                  | 2%                     |  |
| AgCl3-2                         | 2.53E-03             | 0%                     | AgCl3-2                             | 7.30E-02       | 0%                      | AgCl3-2                                                                         | 7.28E-02                  | 0%                     |  |
| AgEDTA-3                        | 9.60F-09             | 0%                     | AgEDTA-3                            | 2.78F-07       | 0%                      | AgEDTA-3                                                                        | 2.78F-07                  | 0%                     |  |
| AgH2BO3 (ag)                    | 3.45E-07             | 0%                     | AgH2BO3 (ag)                        | 9.99E-06       | 0%                      | AgH2BO3 (ag)                                                                    | 1.00E-05                  | 0%                     |  |
| AgHEDTA-2                       | 1.93E-09             | 0%                     | AgHEDTA-2                           | 5.59E-08       | 4.20E-10                | AgHEDTA-2                                                                       | 5.59E-08                  | 0%                     |  |
| AgNO3 (ag)                      | 5.84F-05             | 0%                     | AgNO3 (ag)                          | 1.69E-03       | 0%                      | AgNO3 (ag)                                                                      | 1.69F-03                  | 0%                     |  |
|                                 | 2 56E-06             | 0%                     |                                     | 7 42F-05       | 0%                      |                                                                                 | 7 43F-05                  | 0%                     |  |
| Δσ504-                          | 2.302 00<br>2.21F-04 | 0%                     | Δσ5Ω4-                              | 6 39F-03       | 0%                      | ΔσSO4-                                                                          | 6 40F-03                  | 0%                     |  |
|                                 | 0.00F+00             | 0%                     |                                     | 7 34F+01       | 55%                     |                                                                                 | 8 48F+02                  | 93%                    |  |
| Total                           | 2.06                 | 100%                   | Total                               | 133.03         | 100%                    | Total                                                                           | 907.29                    | 100%                   |  |
| 10001                           | 2.00                 | 10078                  | 10101                               | 155.05         | 10070                   | 10101                                                                           | 507.25                    | 10070                  |  |
| Si_Ag (Ev                       | nosure con 10        | 0 ug/L)                | Si-Ag (Evo                          | osure con 100  | )0 µg/l)                | Si_Ag (Evr                                                                      | osure con 5000            | ug/L)                  |  |
|                                 | posure con. 10       | (26 / ug/l)            |                                     | asured in NC   | /220 0 µg/L)            |                                                                                 | essured in NC (8          | 15 96 μσ/L)            |  |
| Ag Speciation                   | Mass (ug/L)          | (20.4 μg/L)<br>% Total | Ag Speciation                       | Mass (ug/L)    | (223.5 µg/L)<br>% Total | Ag Speciation                                                                   |                           | 13.30 μg/L/<br>% Total |  |
|                                 | 2 25E+00             | 0%                     |                                     | 5 07E±00       | 7% TOLAT                |                                                                                 | 5 08E±00                  | 76 TOLAI               |  |
|                                 | 2.23L+00             | 978                    |                                     | J.07 L+00      | 278                     |                                                                                 | J.08L+00                  | 1/8                    |  |
|                                 | 0.30E-13             | 66%                    |                                     | 4.50E-14       | 179/                    |                                                                                 | 4.57E-14                  | U%                     |  |
|                                 | 1.74E+01             | 00%                    | Ager (aq)                           | 3.92E+01       | 70/                     |                                                                                 | 3.92E+01                  | 3%                     |  |
| Ageiz-                          | 0.010+00             | 20%                    |                                     | 7.205.02       | 7 %                     |                                                                                 | 7.325.03                  | 2 /0                   |  |
|                                 | 3.24E-02             | 0%                     |                                     | 7.30E-02       | 0%                      |                                                                                 | 7.26E-02                  | 0%                     |  |
| AgeDTA-3                        | 1.23E-07             | 0%                     | AgeDTA-3                            | 2.78E-07       | 0%                      | AgeDTA-5                                                                        | 2.78E-07                  | 0%                     |  |
|                                 | 4.43E-00             | 0%                     |                                     | 9.992-00       | 0%                      |                                                                                 | 1.00E-05                  | 0%                     |  |
|                                 | 2.47E-08             | 0%                     |                                     | 5.59E-08       | 0%                      |                                                                                 | 5.59E-08                  | 0%                     |  |
|                                 | 7.49E-04             | 0%                     |                                     | 1.09E-05       | 0%                      |                                                                                 | 1.09E-05                  | 0%                     |  |
| AgOH (aq)                       | 3.29E-05             | 0%                     | AgOH (aq)                           | 7.42E-05       | 0%                      | AgOH (aq)                                                                       | 7.43E-05                  | 0%                     |  |
| AgSU4-                          | 2.83E-03             | 0%                     | AgSU4-                              | 6.39E-03       | 0%                      | AgSU4-                                                                          | 6.40E-03                  | 0%                     |  |
| Ager (s)                        | 0.00E+00             | 0%                     | Ager (s)                            | 1./1E+02       | /4%                     | AgCI (S)                                                                        | 7.57E+02                  | 93%                    |  |
| Iotai                           | 26.44                | 100%                   | Iotai                               | 230.22         | 100%                    | lotai                                                                           | 816.96                    | 100%                   |  |
| A                               | <b>F</b>             | 100                    | A i Ci A = /F                       |                | 000                     | A                                                                               |                           | 00                     |  |
| Ami-Si-Ag (                     | Exposure con.        | $100 \mu g/L$          | Ami-Si-Ag (Exposure con. 1000 μg/L) |                |                         | Ami-Si-Ag (Exposure con. 5000 μg/L)<br>Dissolved Ag measured in NC (309.8 μg/L) |                           |                        |  |
| Dissolved Ag I                  | measured in NC       | 2 (7.7 μg/L)           | Dissolved Ag m                      | easured in NC  | (84.6 μg/L)             | Dissolved Ag m                                                                  | leasured in NC (3         | 09.8 μg/L)             |  |
| Ag Speciation                   | Mass (µg/L)          | % Iotai                | Ag Speciation                       | IVIASS (µg/L)  | % Total                 | Ag Speciation                                                                   | Mass (µg/L)               | % Totai                |  |
| Ag+1                            | 6.57E-01             | 9%                     | Ag+1                                | 5.07E+00       | 6%                      | Ag+1                                                                            | 5.08E+00                  | 2%                     |  |
| Ag2MoO4 (aq)                    | 7.32E-16             | 0%                     | Ag2MoO4 (aq)                        | 4.36E-14       | 0%                      | Ag2MoO4 (aq)                                                                    | 4.36E-14                  | 0%                     |  |
| AgCI (aq)                       | 5.07E+00             | 66%                    | AgCI (aq)                           | 3.92E+01       | 46%                     | AgCI (aq)                                                                       | 3.92E+01                  | 13%                    |  |
| AgCl2-                          | 1.99E+00             | 26%                    | AgCl2-                              | 1.54E+01       | 18%                     | AgCl2-                                                                          | 1.53E+01                  | 5%                     |  |
| AgCl3-2                         | 9.47E-03             | 0%                     | AgCl3-2                             | 7.30E-02       | 0%                      | AgCl3-2                                                                         | 7.30E-02                  | 0%                     |  |
| AgEDTA-3                        | 3.60E-08             | 0%                     | AgEDTA-3                            | 2.78E-07       | 0%                      | AgEDTA-3                                                                        | 2.78E-07                  | 0%                     |  |
| AgH2BO3 (aq)                    | 1.29E-06             | 0%                     | AgH2BO3 (aq)                        | 9.99E-06       | 0%                      | AgH2BO3 (aq)                                                                    | 9.99E-06                  | 0%                     |  |
| AgHEDTA-2                       | 7.23E-09             | 0%                     | AgHEDTA-2                           | 5.58E-08       | 0%                      | AgHEDTA-2                                                                       | 5.59E-08                  | 0%                     |  |
| AgNO3 (aq)                      | 2.19E-04             | 0%                     | AgNO3 (aq)                          | 1.69E-03       | 0%                      | AgNO3 (aq)                                                                      | 1.69E-03                  | 0%                     |  |
| AgOH (aq)                       | 9.61E-06             | 0%                     | AgOH (aq)                           | 7.42E-05       | 0%                      | AgOH (aq)                                                                       | 7.42E-05                  | 0%                     |  |
| AgSO4-                          | 8.28E-04             | 0%                     | AgSO4-                              | 6.39E-03       | 0%                      | AgSO4-                                                                          | 6.39E-03                  | 0%                     |  |
| AgCl (s)                        | 0.00E+00             | 0%                     | AgCl (s)                            | 2.50E+01       | 30%                     | AgCl (s)                                                                        | 2.51E+02                  | 81%                    |  |
| Total                           | 7.73                 | 100%                   | Total                               | 84.68          | 100%                    | Total                                                                           | 310.20                    | 100%                   |  |

Figure S1. The potential interactions of the four species in the nanocosm assay. Algae serves as primary producer and produces oxygen for other species in the system. Bacteria are the representative decomposers of the system. Both algae and bacteria are a primary food source of *D. magna*. Zebrafish do not interact with other species directly before they hatch as their chorion serves as a barrier to those interactions. After zebrafish hatching at 80 hours, they start mouth gaping behavior and can potentially ingest some algae and bacteria.



Figure S2. AgNP surface chemistry, TEM images and primary particle sizes as reported by the manufacturer.



Figure S3. Zeta potential (ZP) of PEG-Ag (orange circle), Si-Ag (green triangle), and Ami-Si-Ag (blue square) in NCM over 120 hours at 10 mg L-1. Standard errors were derived for triplicate measures on each AgNP. Asterisk (\*) represents a change in zeta potential from time 0 in Ami-Si-Ag.

terminated Silica



Figure S4. Normalized algal survival in exposure scenarios containing algae and bacteria (A+B), as well as those that added *Daphnia* (A+B+D) and zebrafish (A+B+D+Z) using three different surface functionalized AgNPs. Asterisk (\*) indicates significant difference among treatments and the corresponding control.



Figure S5. Normalized bacterial survival in three different exposure scenarios with three types of AgNPs. Asterisk (\*) indicates significant difference among treatments and the corresponding control.



Figure S6. Images of 120-hour *D. magna* after exposure to 5 mg L<sup>-1</sup> Ami-Si-Ag exposure; A) control; B) *D. magna* in A+B+D exposure scenario; C) *D. magna* in A+B+D+Z exposure scenario.



A) Control

B) Ami-Si-Ag (A+B+D)



Figure S7. Percent of zebrafish mortality and malformation following 120-hours exposure to three different surface functionalized silver nanoparticles. \* indicates significant difference from control values. YSE-yolk sac edema; PE-pericardial edema; Circ-circulation.



Figure S8. Ag content (%) in unhatched zebrafish chorion (blue) and fish body (green) with 5 mg L<sup>-1</sup> Si-AgNP exposure after 120 hours under A+B+D+Z exposure scenario.



Figure S9. The relationship between the dissolved Ag concentration in the exposure environment and the *Daphnia* (a) and zebrafish (b) silver uptake.



Figure S10. Concentration-response relationship between the dissolved Ag concentration in each exposure nanocosm and algal survival.



Figure S11. Concentration-response relationship between the dissolved Ag concentration in each exposure nanocosm and bacterial survival.



Figure S12. Concentration-response relationship between *D. magna* survival and the dissolved Ag concentration in each exposure nanocosm.



Figure S13. Concentration-response relationship between zebrafish survival and the dissolved Ag concentration in each exposure nanocosm.



Figure S14. Species sensitivity distributions (SSDs) of organisms in nanocosm using the mean  $LC_{50}$  value calculated from Table 2 and the dissolved Ag concentration in the exposure vessels.

