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Text S1. Supporting Methods

Symbols

𝑘𝐵 Boltzmann constant
R Gas constant
𝜇 Viscosity of water
T Temperature

𝑉𝑠𝑜𝑙 Solution volume
𝑆𝑡𝑜𝑡 Total initial NP surface area in solution

𝑉̅ Molar volume of MexOx
𝛾 Particle surface free energy

𝜌𝑝 Density of MexOx

𝐷𝑀𝑒𝑖𝑜𝑛
Me+ diffusion coefficient in water ("ion" used in place of "+" to avoid any confusion of the 
metal ion charge with the addition operator)

𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒𝑖𝑜𝑛 Stoichiometric coefficient for MexOx dissolution to form Me+

ℎ Particle boundary layer thickness (Nernst-Brunner modified Noyes Whitney)
[𝑀𝑒𝑖𝑜𝑛]𝑡 Metal ion concentration at time t

[𝑀𝑒𝑖𝑜𝑛]𝑒𝑞 Metal ion concentration at equilibrium
[𝑀𝑒𝑥𝑂𝑥]𝑡 MexOx concentration at time t

t Time
r Particle radius
m Particle mass

𝐷𝑔𝑒𝑜𝑚,0 "Characteristic diameter" of primary NPs: Surface-weighted geometric mean diameter 
𝐷𝑖,𝑎𝑔𝑔 "Characteristic diameter" of aggregates

Total Mass Balance
MNP,tot Total NP mass in solution

mb𝑘 Dissolution rate constant, total mass balance model
𝑘𝑆,𝑚𝑏 Surface-area normalized reaction rate, total mass balance model

Population Balance (all)
(m)𝑓 Particle size distribution (function of mass)
𝑚𝑖

SM: representative bin size for bin i
Moment methods: abscissa associated with quadrature point i

𝑤𝑖 Weight associated with quadrature point i (moment methods)
𝑚𝑎𝑣𝑔 Average primary particle mass
𝑟𝑎𝑣𝑔 Average primary particle radius

n Number of quadrature points (moment methods)
Xgeom,i Geometric mean number of primary particles in aggregates of size i

𝜇𝑘 kth moment of the particle size distribution
N Total particle number concentration at time t (N0 = initial concentration)
A Dissolution rate, dm/dt

𝑘𝑆,𝑝𝑏 Surface-area normalized reaction rate, population balance
𝐾 Proportionality constant for permeable aggregates colliding due to Brownian motion
𝐷𝑓 Fractal dimension of the aggregate
β Collision rate due to Brownian motion
α Attachment efficiency
𝜑 Dissolution flux

Sectional Method
𝑁𝑖 Number concentration of particles in bin i
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mrat Ratio used to select bin sizes
q Exponent used to select bin sizes

mi,lo Mass at the lower boundary of size bin i
mmin Minimum particle mass
mmax Maximum particle mass
𝑛𝑏𝑖𝑛𝑠 Number of size bins

Direct QMOM
𝑎𝑖 Derivative of weight associated with quadrature point i with respect to t
𝑏𝑖 Derivative of weighted abscissa associated with quadrature point i with respect to t
𝑆̅𝑘 Source term for NP processes

Extended QMOM
n2 Number of secondary quadrature points
𝜎𝛽 Measure of spread around primary quadrature points

𝜎𝛽,𝑚𝑎𝑥 Upper bound on σβ
𝑤𝑖1,𝑖2 Weight associated with secondary quadrature point i1, i2

𝑚𝑖1,𝑖2 Abscissa associated with secondary quadrature point i1, i2

𝜌𝑖1,𝑖2
𝑤𝑖1

𝑤𝑖1,𝑖2
𝑖 First parameter of the beta distribution associated with primary quadrature point i
𝜇𝑖 Second parameter of the beta distribution associated with primary quadrature point i
𝜇̃𝑘 Transformed moment set

̃𝜇 *
𝑘 Transformed star moment set

𝑝 *
𝑘 Canonical star moment set
̃𝑝 *
𝑘 Transformed canonical star moment set

,  𝐻2𝑘 𝐻2𝑘 + 1,

 𝐻2𝑘 + 1, 𝐻2𝑘
Hankel determinants of the transformed star moment set

𝐽𝑖 Difference between predicted and known value of the 2nth moment for a given estimate of σβ

𝜀 First parameter of the weight function w used to find the secondary quadrature points
𝜁 Second parameter of the weight function w used to find the secondary quadrature points
J Jacobi matrix used to find the secondary quadrature points

𝑎𝑗 Diagonals of the Jacobi matrix J
𝑏𝑗 Co-diagonals of the Jacobi matrix J

Direct Simulation Monte Carlo
𝑓𝑠𝑎𝑓𝑒𝑡𝑦 Safety factor to ensure only one aggregation event occurs during a time step
𝑡𝑐𝑜𝑎𝑔,𝑖 Average time to coagulation for particle i

𝑃𝑖𝑗 Probability of collision between particles i and j

Analytical Solutions
µln Location parameter of the lognormal distribution at time t (µln,0 = initial condition)
σln Scale parameter of the lognormal distribution at time t (σln,0 = initial condition)

S1.i. Introduction to Supporting Methods:
In recognition of the complexity and diversity of these methods, and the reader's need to assess 
their most fundamental features without getting bogged down, we use a set of notations that (we 
hope) is as simple as possible.  In so doing, we have deviated from the more rigorous 
formulations found in many of the original works.  In addition, we emphasize model development 
for a simple batch reactor and the practical identification and treatment of common errors that 
arise during their execution, rather than (e.g.) theory, the mathematical derivations of these 
methods, or the execution of their many permutations and extensions.  
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The Methods in the main text are a reduced version of those that follow.

S1.1. Total Mass Balance
Conventional mass balance differs from population balance as described in Section S1.2 in that 
the particle size distribution (and/or its statistical properties) are not resolved or tracked over 
time.  Instead, only the total mass concentration of each species of interest (here, the metal oxide 
and its ions) is tracked.

In a simple batch reactor (complete dispersion, no advection), and in the absence of 
dissolution, aggregation has no effect on the total NP mass.  When dissolution does occur, the 
following simple first-order linear inhomogeneous differential equation1 has been used to 
describe dissolution.2

𝑑[𝑀𝑒𝑖𝑜𝑛]𝑡

𝑑𝑡
= 𝑘𝑚𝑏([𝑀𝑒𝑖𝑜𝑛]𝑒𝑞 ‒ [𝑀𝑒𝑖𝑜𝑛]𝑡)

Analytical solution:        (S1)[𝑀𝑒𝑖𝑜𝑛]𝑡 = [𝑀𝑒𝑖𝑜𝑛]𝑒 𝑞( 1‒ 𝑒
‒ 𝑘𝑚 𝑏𝑡)

In Equation S1,  is the mass concentration of the ion in solution at time t,  is the [𝑀𝑒𝑖𝑜𝑛]𝑡 [𝑀𝑒𝑖𝑜𝑛]𝑒𝑞

ion concentration in solution at equilibrium, and kmb is an empirical rate constant determined by 
data fitting.  In a batch reactor model,  can be calculated directly once   is known [𝑀𝑒𝑥𝑂𝑥]𝑡 [𝑀𝑒𝑖𝑜𝑛]𝑡

because the total metal concentration remains constant.  Since an analytical solution is available, 
simulation runtimes are trivial. As a matter of historical interest, we note that Equation S1 is the 
original 1897 form of the Noyes Whitney equation before its modification by Nernst and Brunner 
to the form used most often today (see Section S1.2.b).3

As written, Equation S1 is not a function of particle size.  The size dependence of kmb may 
be determined by data fitting.  The size dependence of the equilibrium solubility,  is [𝑀𝑒𝑖𝑜𝑛]𝑒𝑞,

either determined by data fitting or estimated using the Ostwald-Freundlich relation, a theoretical 
model that attributes the observed increase in solubilities as particle radii (r) decrease to an 
increase in surface curvature.  

      (S2)

[𝑀𝑒𝑖𝑜𝑛]𝑒 𝑞(𝑟)

[𝑀𝑒𝑖𝑜𝑛]𝑒 𝑞(𝑏 𝑢 𝑙 𝑘)
= 𝑒

2𝛾𝑉̅
𝑅 𝑇 𝑟

where γ is the surface free energy,  is the molar volume, R is the gas constant, and T is the  𝑉̅
temperature.  Equation S2 may over-estimate the equilibrium solubility of NPs.4-7  Since our 
analysis is purely theoretical and questions about the appropriateness of these models for NPs can 
only be answered with experiments, we use Equation S2 in this work (applying it in both mass 
balance and population balance models).

In Equation S2, we used the initial surface-weighted geometric mean radius as the 
characteristic particle size for the distribution. In general, the surface-weighted geometric mean 
diameter,  (where 0 indicates "primary" or unaggregated particles, and not t=0) was 𝐷𝑔𝑒𝑜𝑚,0

calculated at every time step as shown.  
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      (S3)

𝐷𝑔𝑒𝑜𝑚,0 = 𝑒𝑥𝑝[
𝑛

∑
𝑖 = 1

𝑊𝑖𝐷
2
𝑖  𝑙𝑛𝐷𝑖

𝑛

∑
𝑖 = 1

𝑊𝑖𝐷
2
𝑖

]
where  is the particle diameter associated with a given size class (in the SM) or quadrature point 𝐷𝑖

(in the QMOM) and Wi is the particle number concentration associated with that size class 
( = ) or quadrature point ( = ).8 𝑊𝑖 𝑁𝑖 𝑊𝑖 𝑤𝑖

Eq. S3 was used wherever a measure of the primary particle size was needed.  This 
measure has several advantages over more traditional estimates of particle diameter including the 
(number-weighted) mean and the geometric mean. The geometric mean of a skewed distribution 
is a better estimate of its central tendency than its average.  For reactive NPs, the surface-
weighted diameter is more relevant than the number-weighted diameter because of the controlling 
influence of surface area on dissolution kinetics.  In addition, the surface-weighted diameter does 
not rely on the zeroth moment (the total number concentration) and is thus robust to numerical 
errors introduced by approximation of the dissolution flux.

S1.2. Population Balance: General Principles
Although definitions vary (e.g., population balance is often defined simply as an implementation 
of the "population balance equation," Equation S4),9, 10 population balance may be defined most 
generally as a means of modeling particle populations in which the continuity equation describes 
the distribution of particle properties (so-called "internal coordinates") across the population in 
addition to tracking changes in the average or total properties of the population (e.g., mass 
concentration) across space and time ("external coordinates").11  The internal coordinate of 
greatest interest in population balance is nearly always particle size, and we focus exclusively on 
this property here.  

By tracking changes in the particle size distribution over time and space, rather than 
merely tracking the total particle mass (Section S1.1), population balance models are able to track 
changes in the number concentration, surface area concentration, and primary and/or aggregate 
particle sizes in addition to the total NP and ion mass concentrations.  Additionally, population 
balance allows the modeler to explicitly account for size-dependent differences in dissolution and 
aggregation rates across the population at each time step.  However, the mathematical 
complexity, data requirements, and runtime demands of population balance methods are, 
unsurprisingly, substantially greater than that of total mass balance models.  Modelers should not 
use this method unless it is truly necessary.12

The particle size distribution is described differently in different population balance 
methods.  The three most popular alternatives are sectional methods, moment methods, and 
Monte Carlo methods.10, 13-15  In the sectional method (SM), the size domain is divided into 
sections or "bins" such that the particle size distribution is treated like a histogram.  Moment 
methods conserve computational resources relative to the SM by only tracking the evolution of 
the lower-order statistical moments of a particle size distribution instead of tracking the entire 
distribution.10, 16  As described in Section S1.2.d, the moments capture most of the essential 
features of the distribution and can also, in some cases, be used to reconstruct it.  Monte Carlo 
methods explicitly model the behavior of a finite sub-population of particles10, 15 and thus may 
require high runtimes relative to moment methods to achieve a given accuracy.13  MC simulation 
is generally considered too computationally expensive for incorporation with computational fluid 
dynamics code,11, 17 but it is a reasonable alternative for batch reactor-type systems (e.g., 
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laboratory studies).14  Importantly, there are an impressive number of variants upon, and 
alternatives to, these three major approaches.

We compare two moment methods in this work: The Direct Quadrature Method of 
Moments (DQMOM)11, 18 and the Extended Quadrature Method of Moments (EQMOM).19  
Differences between these methods, their application to NPs, and their advantages over 
"classical" QMOM16 are described in detail below (Sections S1.5 and S1.6).  We chose DQMOM 
because it is extremely fast and relatively simple to implement.  We chose EQMOM because it is 
specifically designed to deal with the "dissolution flux problem" described in the main text and 
Section S1.2.e.iii, which is crippling for most moment-based approaches.  

S1.2.a. The population balance equation for dissolution and aggregation
The following population balance equation (PBE) may be used to describe a change in the 
particle size distribution, f, over time, t, due to dissolution and aggregation9, 10, 16, 20-22

∂𝑓
∂𝑡

= (∂𝑓
∂𝑡)𝑑𝑖𝑠𝑠 + (∂𝑓

∂𝑡)𝑎𝑔𝑔

(∂𝑓
∂𝑡)𝑑𝑖𝑠𝑠 = ‒

∂(𝐴𝑓)
∂𝑚

(∂𝑓
∂𝑡)𝑎𝑔𝑔 =

1
2

𝑚

∫
0

𝛼(𝑚 ‒ 𝑚',𝑚')𝛽(𝑚 ‒ 𝑚',𝑚')𝑓(𝑚 ‒ 𝑚')𝑓(𝑚')𝑑𝑚'

                                                                   (S4)
‒ 𝑓(𝑚)

∞

∫
0

𝛼(𝑚,𝑚')𝛽(𝑚,𝑚')𝑓(𝑚')𝑑𝑚'

where m (particle mass) is our chosen size coordinate, A=dm/dt is the dissolution rate law 
described in Section S1.2.b,9, 16, 23 β is the frequency of particle-particle collisions (#/m3) that may 
lead to an aggregation event, and α is the probability that two particles will remain attached upon 
collision.  α is alternatively called the "sticking coefficient" or "attachment efficiency," and is a 
major focus of current NP fate research.24-26  Several other terms may be included in the PBE if 

other processes (e.g., aggregate breakage, settling) are of interest.  Note, however, that  (∂𝑓
∂𝑡)𝑎𝑔𝑔

applies equally to both NP homoaggregation, modeled in this work, and heteroaggregation (e.g., 
as demonstrated by Therezien et al.).27

The first term on the right-hand side of the equation for  describes the formation (∂𝑓
∂𝑡)𝑎𝑔𝑔

of new aggregates of size m via the aggregation of primary (unaggregated) particles or aggregates 
of size (m-m') with those of size m' (the coefficient, 1/2, simply eliminates double-counting).  The 
third term describes the loss of particles of size m due to the aggregation of particles of size m 
with those of any other size.  Note that both terms are simply second-order rate laws in which the 
aggregation rate, described by the product αβ, is assumed to be linearly proportional to the 
number concentrations of particles of each size.  
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S1.2.b. Dissolution rate
We use the 1900 variant on Eq. S1 (the original Noyes Whitney equation) by Brunner and 
Tolloczko3 to describe the size-dependent dissolution of NPs.  In this form, kmb is replaced with 
the product of a surface area-normalized rate, , and Stot, the total surface area of all particles 𝑘𝑆,𝑚𝑏

in solution.  

                      (S5)

𝑑[𝑀𝑒𝑖𝑜𝑛]𝑡

𝑑𝑡
= 𝑘𝑆,𝑚𝑏𝑆𝑡𝑜𝑡([𝑀𝑒𝑖𝑜𝑛]𝑒𝑞 ‒ [𝑀𝑒𝑖𝑜𝑛]𝑡)

Thus this expression simply states that particle dissolution is surface-area dependent and proceeds 
by exponential decay until equilibrium is achieved.

To use Equation S5 in population balance, we must rewrite the right-hand side in terms of 
our internal coordinate, particle mass.  We must also rewrite the entire expression in terms of the 
mass loss of a single particle of a given size, rather than the gain in the ion concentration due to 
dissolution of all particles.  A derivation follows in which we assume spherical particles, ignore 
the dependence of the total number concentration on time, and assume that the particle population 
is monodisperse.  These assumptions are not applied elsewhere in our work; they are simply a 
convenience that allows us to find an appropriate form of Equation S5 for use in our model.  

 is the stoichiometric coefficient for  dissolution (g  lost / g  
𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒𝑖𝑜𝑛 𝑀𝑒𝑥𝑂𝑥 𝑀𝑒𝑥𝑂𝑥 𝑀𝑒𝑖𝑜𝑛

formed), MNP,tot is the total NP mass in solution, Vsol  is the solution volume, and N0 is the initial 
total particle number concentration.

𝑑[𝑀𝑒𝑖𝑜𝑛]𝑡

𝑑𝑡
= 𝑘𝑆,𝑚𝑏𝑆𝑡𝑜𝑡([𝑀𝑒𝑖𝑜𝑛]𝑒𝑞 ‒ [𝑀𝑒𝑖𝑜𝑛]𝑡)

𝑑𝑀𝑁𝑃,𝑡𝑜𝑡

𝑑𝑡
≈ 𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒𝑖𝑜𝑛

𝑉𝑠𝑜𝑙𝑘𝑆,𝑚𝑏𝑆𝑡𝑜𝑡([𝑀𝑒𝑖𝑜𝑛]𝑡 ‒ [𝑀𝑒𝑖𝑜𝑛]𝑒𝑞)

𝑑𝑚𝑖

𝑑𝑡
≈

𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒𝑖𝑜𝑛
𝑉𝑠𝑜𝑙𝑘𝑆,𝑚𝑏𝑆𝑡𝑜𝑡

𝑁0𝑉𝑠𝑜𝑙
([𝑀𝑒𝑖𝑜𝑛]𝑡 ‒ [𝑀𝑒𝑖𝑜𝑛]𝑒𝑞)

𝑑𝑚𝑖

𝑑𝑡
≈

𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒𝑖𝑜𝑛
𝑉𝑠𝑜𝑙𝑘𝑆,𝑚𝑏(𝑁0𝑉𝑠𝑜𝑙4𝜋𝑟𝑖

2)

𝑁0𝑉𝑠𝑜𝑙
([𝑀𝑒𝑖𝑜𝑛]𝑡 ‒ [𝑀𝑒𝑖𝑜𝑛]𝑒𝑞)

𝑑𝑚𝑖

𝑑𝑡
≈ 𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒𝑖𝑜𝑛

𝑉𝑠𝑜𝑙𝑘𝑆,𝑚𝑏4𝜋( 3
4𝜌𝑝𝜋)2/3𝑚𝑖

2/3([𝑀𝑒𝑖𝑜𝑛]𝑡 ‒ [𝑀𝑒𝑖𝑜𝑛]𝑒𝑞)

       (S6)
𝐴𝑖 =

𝑑𝑚𝑖

𝑑𝑡
= 𝑘𝑆,𝑝𝑏𝑚𝑖

2/3([𝑀𝑒𝑖𝑜𝑛]𝑡 ‒ [𝑀𝑒𝑖𝑜𝑛]𝑒𝑞)

As an alternative to Equation S5, many authors have proposed the Nernst-Brunner modified 
Noyes Whitney equation, a second modification of Equation S1.4-7

     (S7)

𝑑[𝑀𝑒𝑖𝑜𝑛]𝑡

𝑑𝑡
=

𝐷𝑀𝑒𝑖𝑜𝑛
𝑆𝑡𝑜𝑡

ℎ𝑉𝑠𝑜𝑙
([𝑀𝑒𝑖𝑜𝑛]𝑒𝑞 ‒ [𝑀𝑒𝑖𝑜𝑛]𝑡)
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 is the rate of ion diffusion in water and h is the thickness of a boundary layer around the 
𝐷𝑀𝑒𝑖𝑜𝑛

surface of the particles through which ions must diffuse for dissolution to occur.  
If we apply the same logic we applied to Equation S5 and assume that h approximately 

equals the particle radius, which is generally the case below 30 microns in size,28, 29 we get 
Equation S8, which is equivalent to the Maxwellian flux expression used in many atmospheric 
chemistry models (compare to Eq. 12.9, p. 591, in ref 20).  When mass is the internal coordinate, 

        (S8)
𝐴𝑖 =

𝑑𝑚𝑖

𝑑𝑡
= 𝐾2𝜋𝐷𝑀𝑒𝑖𝑜𝑛(6𝑚𝑖

𝜌𝑝𝜋)1/3([𝑀𝑒𝑖𝑜𝑛]𝑡 ‒ [𝑀𝑒𝑖𝑜𝑛]𝑒𝑞)

Here, K is a coefficient that arises during the conversion and should approximately (if not 
exactly) equal the stoichiometric coefficient.

Equation S6 has many advantages over Equation S8 for our purposes, and will thus be 
used in this work.  First, Equation S8 assumes that the rate-limiting step of dissolution is the 
diffusion of metal ions away from the particle surface.  However, for metals and metal sulfides, 
the rate-limiting step is more likely to be the rate of surface oxidation.  Second, the empirical 
form (Equation S6) is preferable to the theoretical form (Equation S8) until the theoretical form 
has been extensively tested against experimental data.  Third, Equation S8 may be unusable in 
cases where the radius, rather than the particle mass, is chosen as the internal coordinate, since 
dr/dt will approach infinity as r approaches zero.

The effect of aggregation on dissolution is poorly understood at present.  In order to 
bound its effect, we consider two extreme cases.  In the first, our "base case," we maximize the 
dissolution rate by assuming that aggregation has no effect.  This approach is in general 
agreement with experimental results, for which small particles have been shown to dissolve faster 
than large particles even when they form larger aggregates.30  We proceed as follows: The model 
is run once for a "dissolution only" case in order to determine the average primary (unaggregated) 
particle mass at each time step, .  It is then run a second time for the case of simultaneous 𝑚𝑎𝑣𝑔(𝑡)

dissolution and aggregation.  For the second run, Equation S8 is evaluated for   then is 𝐷𝑔𝑒𝑜𝑚,0(𝑡),

multiplied for each aggregate size by the geometric mean number of primary particles in the 
aggregate, Xi, to determine the overall dissolution rate of the aggregate.  To minimize error in 

, we assume a monodisperse primary particle population.  𝐷𝑔𝑒𝑜𝑚,0(𝑡)

In the second case, which provides a conservative lower bound on the dissolution rate, we 
assume that aggregation leads to complete fusion of the particles, forming compact, solid 
spherical particles whose dissolution behavior is determined by the aggregate mass, 𝑚𝑖.

S1.2.c. Collision rate
In this work, we treat α (the probability of attachment upon collision) as a known constant with a 
fixed value between 0 and 1.  Collisions, which determine the collision rate (β), are assumed to 
result from Brownian motion.

One advantage of choosing mass as our size coordinate is that the mass of every newly 
formed aggregated can be calculated exactly from the masses of the colliding species.  In 
contrast, the radius of the aggregate must be estimated from the unknown geometry of the 
aggregate.  However, even if mass is our size coordinate, we must make an assumption about the 
porosity of the aggregates and its effect on their collision rates.  We use the following expression 
for the collision rate between aggregates of size  and 𝑚𝑖 𝑚𝑗
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    (S9)
𝛽𝑖,𝑗 =

2𝑘𝐵𝑇

3𝜇 (𝑚𝑖
1/𝐷𝑓 + 𝑚𝑗

1/𝐷𝑓)(𝑚𝑖
‒ 1/𝐷𝑓 + 𝑚𝑗

‒ 1/𝐷𝑓)

where  is the fractal dimension of the aggregates.31, 32  We assume  = 1.8 (for all particle 𝐷𝑓 𝐷𝑓

sizes), which is approximately correct for aggregates formed by Brownian diffusion.21, 32  More 
detailed and theoretically rigorous rate laws exist,33-36 but a simple approach is suited to an 
illustrative analysis performed in the absence of experimental data. 

The characteristic aggregate diameters reported in our results (e.g., Figure 2), are 
estimated from the characteristic primary particle diameters at time t,  as shown in 𝐷𝑔𝑒𝑜𝑚,0(𝑡),

Equation S10.  In the absence of dissolution, .33𝐷𝑔𝑒𝑜𝑚,0(𝑡) = 𝐷𝑔𝑒𝑜𝑚,0(0)

  (S10)𝐷𝑖,𝑎𝑔𝑔 = 𝐷𝑔𝑒𝑜𝑚,0(𝑋𝑔𝑒𝑜𝑚,𝑖)
1/𝐷𝑓

S1.2.d. Statistical moments of a distribution
The statistical moments,  of a particle size distribution, f(m), are given as 16𝜇𝑘,

  (S11)
𝜇𝑘 = ∫𝑚𝑘𝑓(𝑚)𝑑𝑚

It is easily seen that  (the "zeroth moment") is the total particle number concentration.  By the 𝜇0

same logic, the moment sequence k = 0, 1/3, 2/3, 1 creates a sequence of values that are directly 
proportional to the total particle number concentration (k = 0), the sum of all particle radii 
(divided by  to find the average particle size, k = 1/3), the surface area concentration (k = 2/3), 𝜇0

and the total mass concentration of the particle population (k = 1).  By tracking this moment 
sequence over time, we are then able to track any dose metric of practical interest with ease.

If radius were our internal coordinate, the moment sequence needed to calculate the 
metrics described above would be k = 0, 1, 2, 3.

If the particle size distribution is described exactly by a particular distribution (e.g., 
exponential, lognormal), its moments can often be calculated directly from the parameters of the 
distribution using known formulas.  The EQMOM relies on this relationship between moments 
and distribution parameters.  They can also be used in the EQMOM and the DQMOM to 
determine the initial (t = 0) moments of a known distribution.

S1.2.e. Introduction to Moment Methods
S1.2.e.i. The Quadrature Approximation
In classical quadrature-based moment methods, Equation S11 (the moment equation) is replaced 
with a discrete approximation using an "n-point Guassian quadrature rule."16

  (S12)
𝜇𝑘 = ∫𝑚𝑘𝑓(𝑚)𝑑𝑚 =  

𝑛

∑
𝑖 = 1

𝑚𝑖
𝑘𝑤𝑖

In effect, the continuous function f(m) is replaced with a particular discrete approximation defined 
by its "quadrature points," or the set of n "abscissas" and "weights" (mi, wi).  The strength of n-
point Gaussian quadrature is that it allows the quadrature points to be calculated from the lower-
order moments of the distribution, thus solving the so-called "closure problem" that characterizes 
moment methods.16
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S1.2.e.ii. Numerical Solution: The Moment Evolution Equations and Matrix Inversion
In classical QMOM, the population balance equation used in the SM (Equation S4) is replaced 
with a continuity equation (the "moment evolution equation") that combines Equation S4 with the 

derivative of Equation S11 to instead balance the moments of the distribution, .  The moment 

𝑑𝜇𝑘

𝑑𝑡
evolution equations for the processes of dissolution and aggregation are as follows:16

𝑑𝜇𝑘

𝑑𝑡
= [𝑑𝜇𝑘

𝑑𝑡 ]𝑑𝑖𝑠𝑠 + [𝑑𝜇𝑘

𝑑𝑡 ]𝑎𝑔𝑔

[𝑑𝜇𝑘

𝑑𝑡 ]𝑑𝑖𝑠𝑠 = 𝑘
∞

∫
0

𝑚𝑘 ‒ 1𝐴(𝑚)𝑓(𝑚)𝑑𝑚

[𝑑𝜇𝑘

𝑑𝑡 ]𝑎𝑔𝑔 =

            (S13)

1
2

∞

∫
0

∞

∫
0

𝛼(𝑚,𝑚')𝛽(𝑚,𝑚')[(𝑚 + 𝑚')𝑘 ‒ 𝑚𝑘 ‒ (𝑚')𝑘]𝑓(𝑚)𝑓(𝑚')𝑑𝑚𝑑𝑚'

The quadrature approximation of Equation S13 is 

           (S14)

𝑑𝜇𝑘

𝑑𝑡
≈ 𝑘

𝑛

∑
𝑖 = 1

𝑚𝑖
𝑘 ‒ 1𝐴𝑖𝑤𝑖 +

1
2

𝑛

∑
𝑖 = 1

𝑛

∑
𝑗 = 1

𝛼𝑖𝑗𝛽𝑖𝑗[(𝑚𝑖 + 𝑚𝑗)𝑘 ‒ 𝑚𝑘
𝑖 ‒ 𝑚𝑘

𝑗]𝑤𝑖𝑤𝑗

Classical QMOM proceeds as follows: (1) Quadrature points are estimated from the moments 
calculated during the previous time step (or the initial conditions) using a matrix inversion 
algorithm such as Product-Difference (described shortly).  The moments of the distribution are 
then evolved from one time step to the next using (e.g., the Euler approximation of) Equation 
S14.

Although the DQMOM and the EQMOM differ from the classical QMOM in their 
description of the particle size distribution and their treatment of its dynamic evolution, the 
algorithms for all three methods require the implementation of a matrix inversion procedure in 
which the lower-order moments of the distribution are used to determine its quadrature points.  In 
this work, we employ  the Product-Difference algorithm.10, 16  The modified Wheeler algorithm 
(MATLAB code provided in Appendix A of ref 37, "Adaptive 1-D quadrature algorithm") is a 
popular alternative that readily identifies and handles numerical problems resulting from the use 
of too many quadrature points (where n should not exceed 5-10).19  However, we found that its 
use of an iterative approach to determine an ideal number of quadrature points was unnecessary 
for successful implementation of the DQMOM and unnecessarily complicated our 
implementation of the EQMOM.

S1.2.e.iii. The Dissolution Flux Problem
As particles dissolve completely, the cross the lower boundary of the size domain.  This creates 
an efflux of particles from the system, , which may be calculated as shown:19𝜑

                 (S15)𝜑 = 𝐴(0)𝑓(0)
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Classical moment methods only track six or fewer quadrature points, and these points will not 
generally lie close enough to the lower boundary to allow an accurate prediction of f(0).  We will 
refer to this as the "dissolution flux" problem of classical moment methods.  Although it could be 
a crippling problem when modeling reactive NPs, which readily dissolve completely, it does not 
seem to be of great concern to the population balance modeling community at large; in fact, it 
appears to only be the focus of a few recent works (in which it is generally described in terms of 
evaporating sprays and thus referred to as the "evaporation flux" problem).  In this work, we test 
three proposed solutions to the problem: The Direct Quadrature Method of Moments with and 
without ratio constraints and the Extended Quadrature Method of Moments.

S1.3. Population Balance #1: The Sectional Method
S1.3.a. Binning approach
In the sectional method (SM), particles are distributed to “sections” (bins) based on their size.  In 
this work, we apply the binning method and numerical solution proposed by Hounslow et al.23 
and extended by Lister et al. 9 This method differs from sectional methods used to date in the 
nanoparticle fate literature27, 28, 38-40 in that it uses a geometric series to define a set of expanding 
bin sizes, rather than defining bins of equal size.  Two benefits of such a method are that (1) it 
allows the modeler to capture a particle size distribution spread over many orders of magnitude 
(e.g., nanometer to  micron size range)4, 5, 7 with a relatively small number of bins, and that (2) the 
highest model resolution (and computational burden) is placed on the smallest particles, for which 
aggregation and dissolution occur more rapidly, numerical error is more likely to arise, and the 
dissolution flux (introduced in Section S1.2.e.iii) must be estimated.

The grid of bin sizes is defined as follows: A ratio, mrat, is chosen such that the 
representative particle size at the lower boundary of each bin i+1, mi+1,lo, is related to the size of 
the lower boundary of next smallest bin, bin i, by the non-negative integer q, as shown.  

mrat = mi+1,lo/mi,lo  = 21/q   q ≥ 1     (S16)

Note that, when q = 1 (mrat= 2), the representative size in each bin is twice the size of the previous 
bin.23  In practice, higher q's result in a higher resolution to the size distribution.  However, little 
to no benefit is generally observed for q ≥ 7.  

The representative lower boundary size of each bin can then be expressed in terms of the 
lower boundary of the entire size distribution, mmin.41

    (S17)𝑚𝑖,𝑙𝑜 = (𝑚𝑟𝑎𝑡
𝑖)𝑚𝑚𝑖𝑛 

The total number of bins needed to describe the size distribution is 22

                  (S18)
𝑛𝑏𝑖𝑛𝑠 = 1 +

𝑙𝑛⁡(𝑚𝑚𝑎𝑥/𝑚𝑚𝑖𝑛)

𝑙𝑛⁡(𝑚𝑟𝑎𝑡)

In this work, we set mmin to be the approximate mass of a single  molecule (the molecular 𝑀𝑒𝑥𝑂𝑥

weight of the molecule of interest divided by Avogadro's number).  
For the purpose of calculating the moments of the distribution, the central estimate of the 

representative size of each bin, mi, is estimated for a given moment of the distribution, k, as 
follows23, 41

                 (S19)
𝑚𝑖 =

𝑚𝑟𝑎𝑡
𝑘 + 1 ‒ 1

(𝑘 + 1)(𝑚𝑟𝑎𝑡 ‒ 1)
𝑚 𝑘

𝑖,𝑙𝑜
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S1.3.b. Numerical solution for dissolution
We rewrote the Second Order Finite Difference approximation by Hounslow et al. and Kostoglou 
and Karabelas (described subsequently) in order to describe particle dissolution under an arbitrary 
rate law Ai (Section S1.2.b) as opposed to growth.23, 41

   where(𝑑𝑁𝑖

𝑑𝑡 )𝑑𝑖𝑠𝑠 =
1

𝑚𝑖,𝑙𝑜
(𝑎𝐴𝑖 ‒ 1𝑁𝑖 ‒ 1 + 𝑏𝐴𝑖𝑁𝑖 + 𝑐𝐴𝑖 + 1𝑁𝑖 + 1)

𝑎 = ‒
2𝑚𝑟𝑎𝑡

(1 + 𝑚𝑟𝑎𝑡)(𝑚𝑟𝑎𝑡
2 ‒ 1)

𝑏 = ‒
2

1 + 𝑚𝑟𝑎𝑡

                 
𝑐 =

2𝑚𝑟𝑎𝑡

(1 + 𝑚𝑟𝑎𝑡)(𝑚𝑟𝑎𝑡
2 ‒ 1)

(S20)

Ni is the number of particles in bin i at time t.  
For dissolution, we used partially implicit time integration via Gauss-Seidel iteration with 

Type I (zero concentration) boundary conditions.42  We also tested an explicit alternative and a 
partial step procedure, fourth-order Runge-Kutta.  Explicit methods were too unstable; Runge-
Kutta was slow and provided no noticeable improvement in accuracy.

S1.3.c. Numerical solution for aggregation
For aggregation, we use the formulation by Lister et al. (Eq. 35 in ref 9), which captures all 
possible particle re-binning events that may occur on the geometric grid described by Equation 
S17 during an aggregation event between two particles of any size.

(𝑑𝑁𝑖

𝑑𝑡 )𝑎𝑔𝑔 =
𝑖 ‒ 𝑄(𝑞) ‒ 1

∑
𝑗 = 1

𝛼𝑖 ‒ 1,𝑗𝛽𝑖 ‒ 1,𝑗𝑁𝑖 ‒ 1𝑁𝑗
2

𝑗 ‒ 𝑖 + 1
𝑞

2
1
𝑞 ‒ 1

+
𝑞

∑
𝑘 = 2

𝑖 ‒ 𝑄(𝑞 ‒ 𝑘 + 1) ‒ 𝑘

∑
𝑗 = 𝑖 ‒ 𝑄(𝑞 ‒ 𝑘 + 2) ‒ 𝑘 + 1

𝛼𝑖 ‒ 𝑘,𝑗𝛽𝑖 ‒ 𝑘,𝑗𝑁𝑖 ‒ 𝑘𝑁𝑗
2

𝑗 ‒ 𝑖 + 1
𝑞 ‒ 1 + 2

‒
𝑘 ‒ 1

𝑞

2
1
𝑞 ‒ 1

+
1
2

𝛼𝑖 ‒ 𝑞,𝑖 ‒ 𝑞𝛽𝑖 ‒ 𝑞,𝑖 ‒ 𝑞𝑁 2
𝑖 ‒ 𝑞

+
𝑞

∑
𝑘 = 2

𝑖 ‒ 𝑄(𝑞 ‒ 𝑘 + 1) ‒ 𝑘 + 1

∑
𝑗 = 𝑖 ‒ 𝑄(𝑞 ‒ 𝑘 + 2) ‒ 𝑘 + 2

𝛼𝑖 ‒ 𝑘 + 1,𝑗𝛽𝑖 ‒ 𝑘 + 1,𝑗𝑁𝑖 ‒ 𝑘 + 1𝑁𝑗
‒ 2

𝑗 ‒ 𝑖
𝑞 + 2

1
𝑞 ‒ 2

‒
𝑘 ‒ 1

𝑞

2
1
𝑞 ‒ 1
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‒
𝑖 ‒ 𝑄(𝑞)

∑
𝑗 = 1

𝛼𝑖,𝑗𝛽𝑖,𝑗𝑁𝑖𝑁𝑗
2

𝑗 ‒ 1
𝑞

2
1
𝑞 ‒ 1

    (S21)
‒

∞

∑
𝑗 = 𝑖 ‒ 𝑄(𝑞) + 1

𝛼𝑖,𝑗𝛽𝑖,𝑗𝑁𝑖𝑁𝑗

where   For aggregation, we use explicit time integration and the Euler method.  As 
 𝑄(𝑞) =

𝑞

∑
𝑙 = 1

𝑙.

with dissolution, an alternative solution that used fourth-order Runge-Kutta provided no clear 
benefit and was discarded.

S1.4. Population Balance #2: Direct Simulation Monte Carlo
In the Monte Carlo approach, a large number of NPs (103-104) are randomly selected from the 
initial particle size distribution, which is then evolved in time according to their rates of 
dissolution and aggregation.  For purposes of calculating statistics of the distribution such as the 
raw fractional moments, the sub-population is treated as a representative sample.  

For dissolution, each particle in the sample population simply loses mass at the rate 
suggested by its dissolution rate law (Eq. S6).  For the "dissolution only" case, a fixed time step 
was used.  

Cases that included aggregation had a variable time step.  We employed the Direct 
Simulation Monte Carlo approach of Zhao et al. (2007).15  At each time point, the length of the 
next time step, , was chosen dynamically such that at most one aggregation event would occur ∆𝑡
during the time step:

    (S22)

∆𝑡 = 𝑓𝑠𝑎𝑓𝑒𝑡𝑦 ∙ 𝑚𝑖𝑛(𝑡𝑐𝑜𝑎𝑔,𝑖),  𝑡𝑐𝑜𝑎𝑔,𝑖 =
𝑉𝑠𝑜𝑙

∑
𝑗 ≠ 𝑖

𝛼𝛽𝑖𝑗

where  is a safety factor below 1 (e.g.,  = 0.01) that ensures the time step always 𝑓𝑠𝑎𝑓𝑒𝑡𝑦 𝑓𝑠𝑎𝑓𝑒𝑡𝑦

remains below the shortest time in which aggregation occurs;  is the average time to 𝑡𝑐𝑜𝑎𝑔,𝑖

coagulation for particle i; and Vsol, , and are (as defined previously) the solution volume, the 𝛼 𝛽𝑖𝑗 
size-independent attachment efficiency, and the collision rate between particles i and j, 
respectively.

Aggregation is treated probabilistically.  Particle i undergoes aggregation during a time 
step if 

rand() <       (S23)
1 ‒ 𝑒𝑥𝑝⁡(

‒ ∆𝑡
2 ∗ 𝑡𝑐𝑜𝑎𝑔,𝑖 

)

where rand() is a random number between 0 and 1.  Particle j, the particle that aggregates with 
particle i during the time step (i.e., the mass of particle j is added to that of particle i, and particle 
j is removed from the sample) is found using the "inverse method," which sums the probabilities 
of collision between particles i and j, Pij, according to Eq. S24 until it reaches a particle j for 
which the summation exceeds a new random value rand().
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select j' for which

       where                                            (S24)

𝑟𝑎𝑛𝑑() >
𝑗'

∑
𝑗 = 1
𝑗 ≠ 𝑖

𝑃𝑖𝑗
𝑃𝑖𝑗 =

𝛼𝑖𝑗𝛽𝑖𝑗

∑
𝑗 ≠ 𝑖

𝛼𝑖𝑗𝛽𝑖𝑗

If the number of particles in the sample drops below half of its original value, the entire 
population is doubled (by exact replication of the current sample) to prevent errors that arise as 
the number of particles in the sample trends towards zero.  The solution volume is doubled when 
the sample is doubled, a so-called "stepwise constant-volume" approach.

S1.5. Population Balance #3: The Direct Quadrature Method of Moments (DQMOM)
DQMOM approximates the particle size distribution as a sum of i Dirac delta functions with n 
weights wi at locations (abscissas) mi, i = 1 ... n.

    (S25)
𝑓(𝑚) =

𝑛

∑
𝑖 = 1

𝑤𝑖𝛿(𝑚 ‒ 𝑚𝑖)

In the univariate case (i.e., when only one internal coordinate is considered), this representation is 
mathematically identical to the quadrature point approximation used in classical QMOM 
(Equation S12).11  In the DQMOM, however, the continuity equation (Equation S4) is re-written 
in terms of the derivatives of the weights and abscissas of the distribution so that the quadrature 
points may be evolved directly at each time step.  This approach contrasts with that of classical 
QMOM, for which the continuity equation is expressed in terms of the derivatives of the 
moments such that quadrature points must be recalculated from the moment set at each time step 
(e.g., using a matrix inversion procedure, see Section S1.2.e.ii).  Direct QMOM is, 
unsurprisingly, much faster than the classical approach.11

S1.5.a. Numerical solution of the DQMOM
Marchisio and Fox (2005) derive the DQMOM formulation for the Williams spray equation, a 
specific implementation of the PBE (Equation S4) that accounts for non-homogeneous flow.11, 18  
We focus here on implementation of their method in a simple batch reactor model (no-flow, 
homogeneous).  Based on ref 18, we propose two means of addressing the dissolution flux 
problem.

Let  and  describe the evolution of weights and weighted abscissas over time𝑎𝑖 𝑏𝑖

        (S26)
𝑎𝑖 =

∂𝑤𝑖

∂𝑡
, 𝑏𝑖 =

∂(𝑤𝑖𝑚𝑖)

∂𝑡

ai and bi may then be found by solving the following system of equations, where Sk is a 
placeholder for functions that describe the evolution of the particle size distribution over time due 
to specific processes (compare to Equation S14).31

𝑆̅𝑘 = (1 ‒ 𝑘)
𝑛

∑
𝑖 = 1

𝑚𝑖
𝑘𝑎𝑖 + 𝑘

𝑛

∑
𝑖 = 1

𝑚𝑖
𝑘 ‒ 1𝑏𝑖
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𝑆̅𝑘 = 𝑆𝑘,𝑑𝑖𝑠𝑠 + 𝑆𝑘,𝑎𝑔𝑔

𝑆𝑘,𝑑𝑖𝑠𝑠 = 𝑘
𝑛

∑
𝑖 = 1

𝑚𝑘 ‒ 1
𝑖 𝐴𝑖𝑤𝑖

                 (S27)
𝑆𝑘,𝑎𝑔𝑔 =

1
2

𝑛

∑
𝑖 = 1

𝑛

∑
𝑗 = 1

𝛼𝑖𝑗𝛽𝑖𝑗[(𝑚𝑖 + 𝑚𝑗)𝑘 ‒ 𝑚𝑘
𝑖 ‒ 𝑚𝑘

𝑗]𝑤𝑖𝑤𝑗

Equation S27 is solved with linear algebra as described in the Appendix of ref 11.
We use the Euler method in conjunction with ai and bi to update the weights and 

abscissas from one time step to the next.  The moments may be determined from the set (mi, wi) at 
any time step by simple application of the quadrature approximation (Equation S12).

S1.5.b. Error in the DQMOM
Two sources of error in DQMOM are of special importance: The matrix defined by the 
coefficients on the left-hand side of Equation S27 may be ill-conditioned, or it may be singular.

An "ill-conditioned" matrix is one for which error is introduced during matrix inversion 
because the solution to the linear equation is highly sensitive to round-off error in the coefficient 
matrix.  Poorly conditioned matrices have higher condition numbers than well-conditioned 
matrices, where the condition number is defined as the ratio of the largest singular values of the 
matrix to the smallest.  In numerical methods, ill-conditioning causes numerical instability.  

We found that ill-conditioning occurred readily during NP aggregation because it causes 
a rapid increase in the values of the abscissas used to calculate the coefficient matrix.  We solved 
this problem by re-scaling the abscissas at each time step using the scale factor introduced in 
Section 2.4 of ref 18, .  In our case, re-scaling was not needed in the absence of max (𝑚𝑖),𝑖 = 1…𝑛

aggregation.  Furthermore, we found that this simple re-scaling procedure made the stability of 
the DQMOM comparable to that of the EQMOM and the SM.  Thus we did not attempt more 
rigorous approaches such as singular value decomposition and/or iterative solution methods.18, 31

When the condition number of a matrix is infinite, the matrix is singular.  In the 
DQMOM, singularity reflects a lack of independence in the moment sequence, which occurs 
when two or more abscissas are identical (i.e., the distribution has zero variance).  In this case, the 
system of equations does not have a unique solution.11  In our experience, this rare but fatal error 
often results from initial conditions10 and can generally be eliminated by reducing the number of 
quadrature points; n should not, in any case, exceed 5 or 6.31 Alternatively, the problem can 
usually be solved by perturbing non-distinct abscissas (keeping weights the same) or by 
averaging the values of ai and bi found at neighboring points.11

S1.5.c. Estimating dissolution flux with ratio constraints
As described in Section S1.2.e.iii, a flux term must be added to Equation S27 when NPs are able 
to undergo complete dissolution.

                 (S28)
𝑆̅𝑘 = (1 ‒ 𝑘)

𝑛

∑
𝑖 = 1

𝑚𝑖
𝑘𝑎𝑖 + 𝑘

𝑛

∑
𝑖 = 1

𝑚𝑖
𝑘 ‒ 1𝑏𝑖 + 𝛿𝑘0𝜑

Here,  is the dissolution flux and  equals one for k=0 and zero for any other value of k.  𝜑 𝛿𝑘0
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Equation S28 assumes that the lower boundary of the particle size distribution occurs at 
zero.  In fact, the DQMOM is implemented on a semi-infinite domain, [0, Inf), rather than the 
finite domain [mmin, mmax] used in the SM and (Beta) EQMOM.  However, we found that the SM 
and the EQMOM were insensitive to our choice of mmin.  Thus any error arising from the use of a 
different lower boundary in the DQMOM had no appreciable effect on model predictions.

The EQMOM (described below) tackles the dissolution flux problem head-on, 
reconstructing the particle size distribution at each time step in order to evaluate it.  Since no 
reconstruction is available in the DQMOM, we are left with a system of equations that has one 
too many unknowns.  As suggested by ref 18, however, we can approximate a solution by adding 
two more constraints to Equation S28.  These "ratio constraints," which are applied only when 
calculating the influence of dissolution on the weights and abscissas, simply state that the change 
in the particle size distribution due to dissolution will be smooth.

                 (S29)

𝑑
𝑑𝑡( 𝑤𝑖

𝑤𝑖 + 1
) = 0,  

𝑑
𝑑𝑡( 𝑚𝑖

𝑚𝑖 + 1
) = 0 

The ratio constraints for the weights (see Section 2.3 of ref 18 for the derivation) provide a new 
system of equations which can be solved for i=1,...,n-1 (e.g., via matrix inversion) to find bi.

𝑤𝑖 + 1𝑚𝑖 + 1𝑏𝑖
∗ ‒ 𝑤𝑖𝑚𝑖𝑏𝑖 + 1

∗ = 𝐸𝑖

𝐸𝑖 = 𝑤𝑖𝑤𝑖 + 1(𝑚𝑖𝐴𝑖 + 1 ‒ 𝑚𝑖 + 1𝐴𝑖)

where           (S30)𝑏𝑖
∗ = 𝑏𝑖 ‒ 𝑤𝑖𝐴𝑖

Once bi is known, ai is found using Equation S31

    (S31)

𝑎𝑖 =

𝑤𝑖𝑘
𝑛

∑
𝑖 = 1

𝑚𝑖
𝑘 ‒ 1( 𝑏𝑖

∗ )

(𝑘 ‒ 1)
𝑛

∑
𝑖 = 1

𝑚𝑖
𝑘𝑤𝑖

Any value of k other than 1 may be used in Equation S31.  
Finally, solving Equation S28 for k=0 gives an approximation of the dissolution flux

    (S32)
𝜑 = ‒

𝑛

∑
𝑖 = 1

𝑎𝑖

 cannot be negative.  If the procedure described above results in , it is set to zero along 𝜑 𝜑 < 0

with  and .𝑎𝑖 𝑏𝑖
∗

In traditional DQMOM (Equation S27), scaling factors are only applied to the abscissas 
to ensure numerical stability (Section S1.5.b).  When the dissolution flux term is added, weights 

must be rescaled as well.  We use the scaling factor  as suggested by ref 18.

𝑛

∑
𝑖

𝑤𝑖

Because the ratio constraints assume that the particle size distribution transforms 
smoothly over time, it is expected to perform poorly for highly monodisperse particle 
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populations.  In such cases, traditional DQMOM may work better.  The following simple 
procedure is employed: Whenever an abscissa crosses the lower size boundary, its corresponding 
weight is set to zero.  The abscissa itself remains unchanged.

S1.5.d. Initial conditions
The DQMOM uses an efficient and relatively simple approach to transform the weights and 
abscissas of the particle size distribution over time in response to aggregation and dissolution.  
However, it does not specify the initial value of the set (wi, mi).  At t = 0, we express the locations 
and weights of the initial quadrature points in terms of the lower order moments of the 
distribution and solve using a matrix inversion procedure (the Product Difference algorithm, see 
Section S1.2.e.ii).  

S1.6. Population Balance #4: (Beta) Extended Quadrature Method of Moments (EQMOM)
As its name suggests, the Extended Quadrature Method of Moments is an extension of classical 
QMOM (Section S1.2.e).  In both methods, the particle size distribution is approximated by a set 
of quadrature points, which are calculated from the lower-order moments of the distribution at 
each time step using a matrix inversion algorithm, and the moments are evolved directly at each 
time step.

In the classical QMOM and the DQMOM, the PSD is represented by a sum of Dirac delta 
functions.  In the EQMOM, each abscissa mi is instead assumed to describe the central tendency 

of a new statistical distribution, .  The entire distribution is thus described by a 
𝛿𝜎𝛽

(𝑚,𝑚𝑖)

weighted sum of probability density functions (pdfs) as shown:

    (S33)
𝑓(𝑚) =

𝑛

∑
𝑖 = 1

𝑤𝑖𝛿𝜎𝛽
(𝑚,𝑚𝑖)

 takes a pre-specified form.  We employ the Beta distribution (Beta EQMOM) in this 
𝛿𝜎𝛽

(𝑚,𝑚𝑖)
work;19 provides details for both Beta and Gamma EQMOM.  

When  represents a Beta distribution, f(m) may be rewritten as follows:
𝛿𝜎𝛽

(𝑚,𝑚𝑖)

    (S34)
𝑓(𝑚) =

𝑛

∑
𝑖 = 1

𝑤𝑖
𝑚
𝑖 ‒ 1

(1 ‒ 𝑚)
𝜇𝑖 ‒ 1

𝐵(𝑖,𝜇𝑖)

where  and  are the parameters of the distribution and  is a measure 𝑖 = 𝑚𝑖/𝜎𝛽 𝜇𝑖 = (1 ‒ 𝑚𝑖)/𝜎𝛽 𝜎𝛽

of the spread of each Beta distribution around each "primary" abscissa.  Note that every primary 
abscissa is assumed to have the same .  When , EQMOM is equivalent to the DQMOM 𝜎𝛽 𝜎𝛽 = 0

and (in the univariate case) the classical QMOM.  Otherwise,  is used to find a set of 𝜎𝛽

"secondary" quadrature points, each of which is distributed around the first.  Thus EQMOM 
employs two nested quadrature steps at each time step.  

Unlike the primary quadrature step, which only estimates 4-6 quadrature points with 
accuracy, the secondary quadrature step is highly efficient and accurate up to any number of 
quadrature points.  As such, the EQMOM provides two relatively accurate approximations of the 
PSD: Equation S34 and the discrete "dual quadrature approximation," Equation S43 (below).  As 
described in Section S1.6.f, Equation S34 can be used to (1) reconstruct the particle size 
distribution from its quadrature points and (2) estimate the particle efflux from the system due to 
complete dissolution.
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S1.6.a. First coordinate transformation
The Beta EQMOM defines the particle size distribution on the domain [0, 1], rather than upon the 
finite interval [mmin, mmax].13, 43  At each time step, the first step in the BEQMOM is thus to 
perform the following coordinate transformation on the moment set calculated during the 
previous time step43

     (S35)
𝜇̃𝑘 =

1

(𝑚𝑚𝑎𝑥 ‒ 𝑚𝑚𝑖𝑛)𝑘

𝑘

∑
𝑗 = 0

𝑘!
𝑗!(𝑘 ‒ 𝑗)!

( ‒ 𝑚𝑚𝑖𝑛)𝑘 ‒ 𝑗𝜇𝑘

A few notes are in order regarding our choice of moments.  In the DQMOM and the SM, we 
solve for the fractional moments of the distribution.  In contrast, for simplicity, we tracked only 
the integer moments in EQMOM.  Fractional moments (e.g., as shown in Figure 2) were 
estimated ex post facto from the reconstructed distribution at each time step using Equation S11 
and Equation S34.  

The matrix inversion algorithm used in classical QMOM (e.g., Product-Difference) 
requires the first 2n moments of the distribution (where n is the number of quadrature points).  
The EQMOM requires one additional moment (2n+1) in order to find .  The DQMOM and the 𝜎𝛽

SM do not rely on a matrix inversion procedure, so any choice of moments will do.  

S1.6.b. Set-up for primary quadrature
EQMOM uses an iterative procedure to simultaneously select  and determine the set of primary 𝜎𝛽

quadrature points.  This step begins with an initial guess for , such as its theoretical lower 𝜎𝛽

bound of zero (see Section S1.6.c for details on the bounds of ).  𝜎𝛽

The parameters of a beta distribution have a known relationship to its moments:

    (S36)
𝜇𝑘 =

𝑚𝑖 + (𝑘 ‒ 1)𝜎𝛽

1 + (𝑘 ‒ 1)𝜎𝛽
𝜇𝑘 ‒ 1,𝑘 > 0

Let us call the set of (transformed) moments that could be estimated from the primary quadrature 
points of the distribution the "star moments:" 

    (S37)

̃𝜇 ∗
𝑘 =

𝑛

∑
𝑖 = 1

𝑚𝑖
𝑘𝑤𝑖

Equation S36 suggests that the (transformed) moment set of the distribution, which is known 
from the previous time step, can be expressed as a function of the 2n (transformed) star moments 
of the distribution and a set of k coefficients, γk, which are solely a function of  (see ref 19 for 𝜎𝛽

the derivation).

     (S38)𝜇̃𝑘 = 𝛾𝑘
̃𝜇 ∗
𝑘 + 𝛾𝑘 ‒ 1

̃𝜇 ∗
𝑘 ‒ 1 + … + 𝛾1

̃𝜇 ∗
1  𝑓𝑜𝑟 𝑘 ≥ 1

For example,
𝜇̃0 = ̃𝜇 ∗

0

𝜇̃1 = ̃𝜇 ∗
1
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𝜇̃2 =
1

1 + 𝜎𝛽
( ̃𝜇 ∗

2 + 𝜎𝛽
̃𝜇 ∗
1 )

𝜇̃3 =
1

(1 + 2𝜎𝛽)(1 + 𝜎𝛽)
( ̃𝜇 ∗

3 + 3𝜎𝛽
̃𝜇 ∗
2 + 2𝜎𝛽

2 ̃𝜇 ∗
1 )

𝜇̃4 =
1

(1 + 3𝜎𝛽)(1 + 2𝜎𝛽)(1 + 𝜎𝛽)
( ̃𝜇 ∗

4 + 6𝜎𝛽
̃𝜇 ∗
3 + 11𝜎𝛽

2 ̃𝜇 ∗
2 + 6𝜎𝛽

3 ̃𝜇 ∗
1 )

In order to find the star moments,  (k=0, 1, ..., 2n-1), this system of equations is written in 
̃𝜇 ∗
𝑘

matrix form and solved via matrix inversion.  The star moment set itself is then inverted using a 
classical QMOM algorithm such as Product-Difference in order to find the set of n primary 
quadrature points suggested by the initial choice of .  Finally, these quadrature points are used 𝜎𝛽

in Equation S37 to estimate the 2nth star moment, .  
̃𝜇 ∗
2𝑛

The "goodness of fit" between the true distribution and the distribution suggested by our 

choice of  is described by  - , or Equation S39.  Let us call this difference Ji( ).𝜎𝛽 ̃𝜇2𝑛
̃𝜇 ∗
2𝑛 𝜎𝛽

    (S39)𝐽𝑖(𝜎𝛽) = ̃𝜇2𝑛 ‒ 𝛾2𝑛
̃𝜇 ∗
2𝑛 ‒ 𝛾2𝑛 ‒ 1

̃𝜇 ∗
2𝑛 ‒ 1 ‒ … ‒ 𝛾1

̃𝜇 ∗
1

The best choice for  is the value for which Ji( )=0.  We use a root-finding algorithm to find 𝜎𝛽 𝜎𝛽

the smallest  which meets this condition.𝜎𝛽

S1.6.c. Procedure to find   𝜎𝛽

  is bounded on the interval [0, ], where  is either chosen arbitrarily13 or is 𝜎𝛽 𝜎𝛽,𝑚𝑎𝑥 𝜎𝛽,𝑚𝑎𝑥

calculated from the Hankel determinants of the distribution, which are defined as follows for all 
integer moments k:

       

𝐻2𝑘 = | ̃𝜇 ∗
0 ⋯ ̃𝜇 ∗

𝑘
⋮ ⋱ ⋮
̃𝜇 ∗
𝑘 ⋯ ̃𝜇 ∗

2𝑘
|,𝐻2𝑘 + 1 = | ̃𝜇 ∗

0 ‒ ̃𝜇 ∗
1 ⋯ ̃𝜇 ∗

𝑘 ‒ ̃𝜇 ∗
𝑘 + 1

⋮ ⋱ ⋮
̃𝜇 ∗
𝑘 ‒ ̃𝜇 ∗

𝑘 + 1 ⋯ ̃𝜇 ∗
2𝑘 ‒ ̃𝜇 ∗

2𝑘 + 1
|,

    (S40)

𝐻2𝑘 + 1 = | ̃𝜇 ∗
1 ⋯ ̃𝜇 ∗

𝑘 + 1
⋮ ⋱ ⋮
̃𝜇 ∗

𝑘 + 1 ⋯ ̃𝜇 ∗
2𝑘 + 1

|,𝐻2𝑘 = | ̃𝜇 ∗
1 ‒ ̃𝜇 ∗

2 ⋯ ̃𝜇 ∗
𝑘 ‒ ̃𝜇 ∗

𝑘 + 1
⋮ ⋱ ⋮

̃𝜇 ∗
𝑘 ‒ ̃𝜇 ∗

𝑘 + 1 ⋯ ̃𝜇 ∗
2𝑘 ‒ 1 ‒ ̃𝜇 ∗

2𝑘
|

The Hankel determinants (Eq. 1.4.3, p. 20 in ref 43) are first used in Equation S41 (Eq. 1.4.5, p. 
20 in 43) to find the "canonical" moments, corresponding with the (transformed) star moment 𝑝 ∗

𝑘 , 

set .   is then expressed in terms of the canonical moments (Equation S42):
̃𝜇 ∗
𝑘 𝜎𝛽,𝑚𝑎𝑥

  where                  (S41)
̃𝑝 ∗
𝑘 =

𝐻2𝑘 + 1𝐻2𝑘

𝐻2𝑘 + 1𝐻2𝑘 + 𝐻2𝑘 + 1𝐻2𝑘 𝐻 ‒ 1 = 𝐻 ‒ 1 = 𝐻0 = 𝐻0 = 1
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𝜎𝛽,𝑚𝑎𝑥 = {
̃𝑝 ∗
2 (1 ‒ ̃𝑝 ∗

3 )

1 ‒ ̃𝑝 ∗
1 ‒ 2 ∗ ̃𝑝 ∗

2 ‒ ̃𝑝 ∗
1

̃𝑝 ∗
2 + 2 ̃𝑝 ∗

2
̃𝑝 ∗
3

 𝑖𝑓 ̃𝑝 ∗
3 >  

̃𝑝 ∗
1 + ̃𝑝 ∗

2 ‒ ̃𝑝 ∗
1

̃𝑝 ∗
2

1 + ̃𝑝 ∗
2

0.99999 ∗
̃𝑝 ∗
2

1 ‒ ̃𝑝 ∗
2

 𝑖𝑓 ̃𝑝 ∗
3 =  

̃𝑝 ∗
1 + ̃𝑝 ∗

2 ‒ ̃𝑝 ∗
1

̃𝑝 ∗
2

1 + ̃𝑝 ∗
2

̃𝑝 ∗
2

̃𝑝 ∗
3

̃𝑝 ∗
1 + ̃𝑝 ∗

2 ‒ ̃𝑝 ∗
1

̃𝑝 ∗
2 ‒ 2 ̃𝑝 ∗

2
̃𝑝 ∗
3

 𝑖𝑓 ̃𝑝 ∗
3 <  

̃𝑝 ∗
1 + ̃𝑝 ∗

2 ‒ ̃𝑝 ∗
1

̃𝑝 ∗
2

1 + ̃𝑝 ∗
2

�
(S42)

The coefficient 0.99999 is added in the second case to ensure that the  remains finite when 𝜎𝛽,𝑚𝑎𝑥

 (Dr. Frédérique Laurent-Nègre, personal correspondance). 
̃𝑝 ∗
2 = 1

Recall that the purpose of the search procedure is to find the smallest value of  such 𝜎𝛽

that .  Once the bounds on  are known, they can be narrowed using an unbounded 𝐽𝑖(𝜎𝛽) = 0 𝜎𝛽

search procedure such as the secant method until a new interval is found for which  and  𝐽𝑖(𝜎𝛽,𝑚𝑖𝑛)
straddle the y-axis.  Since  is, by definition, positive, this search procedure 𝐽𝑖(𝜎𝛽,𝑚𝑎𝑥) 𝐽𝑖(0)

generally reduces  until .  At this point, we may switch to a bounded search 𝜎𝛽,𝑚𝑎𝑥 𝐽𝑖(𝜎𝛽,𝑚𝑎𝑥) < 0

procedure such as Ridder's method in order to rapidly converge on a solution.  
We found that it sometimes helped to start our search procedure with a non-zero but low 

lower bound such as 10-50.  However, the reader should be aware that this approach may require 
other small changes to the search procedure;  is guaranteed to be non-negative, but no such 𝐽𝑖(0)

guarantee applies to an arbitrarily selected non-zero lower bound.
In practice, the value of  chosen by the search procedure may lead to a "unrealizable" 𝜎𝛽

or invalid star moment set, or one for which one or more abscissas fall outside of the size domain.  
The star moment set is realizable if its lowest Hankel determinant (Equation S40) is positive (see 
Appendix B in ref 19 for details).  If our moment set was found to be unrealizable, we simply 
discarded that estimate in favor of the smallest value of  tried during the search procedure for 𝜎𝛽

which a realizable star moment set was generated, as suggested by ref 13.

S1.6.d. Secondary quadrature and the second coordinate transformation
We have now successfully discovered  and a set of primary quadrature points and can proceed 𝜎𝛽

to find the secondary quadrature points of the distribution.
By performing a second (simpler) coordinate transformation on the transformed moment 

set to define it on the domain [-1,1] instead of [0,1], we can express the beta distribution as a 
Jacobi polynomial that is orthogonal with respect to the following weight function 

 where   and .19  The quadrature points associated with 𝑤(𝑡) = (1 ‒ 𝑡)𝜀(1 + 𝑡)𝜁 𝜀 = 𝜇𝑖 ‒ 1 𝜁 = 𝑖 ‒ 1

Jacobi polynomials can then be calculated with high accuracy and low computational demands.  
Details are provided by ref 44 (Chapter 3).  This algorithm closely mirrors the Product-Difference 
and modified Wheeler (matrix inversion) algorithms as described by refs 10, 16, 37.

Briefly,  and  are used in the following recurrence relation to determine  and , the 𝜀  𝜁 𝑎𝑗 𝑏𝑗

diagonals and co-diagonals of the Jacobi matrix, J (Eq. 3.143a p.84 of ref 44):

𝑎𝑗 =
𝜁2 ‒ 𝜀2

(2𝑗 + 𝜀 + 𝜁)(2𝑗 + 𝜀 + 𝜁 + 2)
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𝑏𝑗 =
4𝑗(𝑗 + 𝜀)(𝑗 + 𝜁)(𝑗 + 𝜀 + 𝜁)

(2𝑗 + 𝜀 + 𝜁 ‒ 1)(2𝑗 + 𝜀 + 𝜁)2(2𝑗 + 𝜀 + 𝜁 + 1)

J=
[ 𝑎0 𝑏1

𝑏1 𝑎1

      
𝑏2    ⋱              

 ⋱
 
 

 
 

⋱   
𝑏𝑁 ‒ 1

 
𝑎𝑁 ‒ 1 𝑏𝑁

𝑏𝑁 𝑎𝑁

]
The ith abscissa associated with each secondary quadrature point is the ith eigenvalue of the Jacobi 
matrix.  The ith weight, wi, is the squared value of the first component of the ith eigenvector.

Once secondary weights and abscissas are determined for each primary quadrature point to 

create the two-dimensional set of secondary quadrature points, ( ), we perform another 
𝑤𝑖1,𝑖2

,𝑚𝑖1,𝑖2

coordinate transformation to once again define them on the domain [0,1].  
We can now calculate the so-called "dual quadrature" representation of the particle size 

distribution:

        where           (S43)

𝑓(𝑚) =

𝑛1

∑
𝑖1 = 1

𝑛2

∑
𝑖2 = 1

𝜌𝑖1,𝑖2
𝛿(𝑚 ‒ 𝑚𝑖1,𝑖2

)
𝜌𝑖1,𝑖2

= 𝑤𝑖1
𝑤𝑖1,𝑖2

Note that  is the Dirac delta function as seen in Equation S25, and not the continuous 
𝛿(𝑚 ‒ 𝑚𝑖1,𝑖2

)

alternative seen in Equation S33, .
𝛿𝜎𝛽

(𝑚,𝑚𝑖)

S1.6.e. Evolution of the moments
Ref 19 use the dual quadrature approximation to derive expressions for the moment evolution 

equations, .  The equations for dissolution and aggregation closely parallel the moment 

𝑑𝜇𝑘

𝑑𝑡
evolution equations used in classical QMOM (Equation S14) and the source terms used in 
DQMOM (Equation S27).  Note that the first coordinate transformation must be reversed before 
evolving the moments from one time step to the next in order to place the moment set back on its 
true domain, [mmin, mmax].

[𝑑𝜇𝑘

𝑑𝑡 ]𝑎𝑔𝑔 =

                (S44)

1
2

𝑛1

∑
𝑖1 = 1

𝑛2

∑
𝑖2 = 1

𝑛1

∑
𝑗1 = 1

𝑛2

∑
𝑗2 = 1

𝜌𝑖1,𝑖2
𝜌𝑗1,𝑗2[(𝑚𝑖1,𝑖2

+ 𝑚𝑗1,𝑗2
)𝑘 ‒ 𝑚 𝑘

𝑖1,𝑖2
‒ 𝑚 𝑘

𝑗1,𝑗2]𝛼𝑖1,𝑖2,𝑗1,𝑗2
𝛽𝑖1,𝑖2,𝑗1,𝑗2

    (S45)
[𝑑𝜇𝑘

𝑑𝑡 ]𝑑𝑖𝑠𝑠 = 𝑘

𝑛1

∑
𝑖1 = 1

𝑛2

∑
𝑖2 = 1

𝑚𝑖1,𝑖2
𝑘 ‒ 1𝜌𝑖1,𝑖2

𝐴𝑖1,𝑖2

S1.6.f. Calculation of the dissolution flux
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Equation S34 allows us to reconstruct the particle size distribution from its primary quadrature 
points at each time step.  Evaluating Equation S34 at mmin also allows us to use Equation S15 to 
approximate the dissolution flux.  Of course, for our numerical solution, we must estimate the 
dissolution flux over a time step rather than at a particular time.  To do so, we take the integral of 
Equation S34 over the range of particle sizes expected to dissolve completely within that time 
step (calculated using Equation S6).

The dissolution flux may also be approximated as the sum of the weights (particle 
number) associated with each quadrature point that crosses the lower boundary during a time 
step.  However, this approach is significantly slower than the integral approach because it 
requires far more secondary abscissas per primary abscissa for accuracy.  For example, upwards 
of 1000 abscissas could be required, as opposed to the (e.g.) 5 ≤ n2 ≤ 80 suggested when using the 
integral approximation.19

S1.7. Analytical Solutions
Consider a lognormal distribution such as we have at the start of our simulation.  The following 
are some useful properties of this distribution (and some of their applications in this work).

Probability density function (used in the analytical solution):

    (S46)
𝑓(𝑚,𝑡) =

𝑁
𝜎𝑙𝑛𝑚 2𝜋

𝑒

‒  
(ln 𝑚 ‒ 𝜇𝑙𝑛)2

2(𝜎𝑙𝑛
2)

Cumulative distribution function, where erfc() is the complementary error function (used in the 
Sectional Method to bin the initial NP population):

    (S47)
𝐹(𝑚,𝑡) =

𝑁
2

𝑒𝑟𝑓𝑐( ‒
ln 𝑚 ‒ 𝜇𝑙𝑛

𝜎𝑙𝑛 2 )
Fractional moments (used to initialize the moments in the EQMOM and DQMOM):

     (S48)𝜇𝑘(𝑡) = 𝑁𝑒
𝑘𝜇𝑙𝑛 +

1
2

𝑘2𝜎𝑙𝑛
2

Williams et al. (1982) provide the following analytical solution for a particle size distribution 

with any known initial functional form  dissolving according to the rate law , where 𝑛0

𝑑𝑚
𝑑𝑡

= 𝐹𝑑𝑚𝑑

 and d are arbitrary constants:45𝐹𝑑

       (S49)
𝑓(𝑚,𝑡) = [1 ‒

(1 ‒ 𝑑)𝐹𝑑𝑡

𝑚1 ‒ 𝑑 ]
𝑑

1 ‒ 𝑑𝑓0([𝑚1 ‒ 𝑑 ‒ (1 ‒ 𝑑)𝐹𝑑𝑡]1/(1 ‒ 𝑑))

In our case, under sink conditions (i.e., =0),  and  (see Equation [𝑀𝑒 + ]𝑡 𝑑 = 2/3 𝐹𝑑 =‒ 𝑘𝑆,𝑝𝑏[𝑀𝑒 + ]𝑒𝑞

S6).
Park et al. (2000) provide an analytical solution for aggregation of an initially lognormal 

particle size distribution according to the rate law given in Equation S9.  In this case, the 
distribution is assumed to remain lognormal (of the form given by Equation S46).46  Parameters 
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change over time according to Equation S50, where  (see Equation S9),  
𝐾 = 𝛼

2𝑘𝐵𝑇

3𝜇  𝜎𝑑(𝑡) = 𝑒
𝜎𝑙𝑛/3

and .𝑣𝑑(𝑡) = 𝑒
𝜇𝑙𝑛

 
𝑙𝑛2𝜎𝑑 =

1
9

𝑙𝑛[2 +
𝑋
𝑌]

  

𝑣𝑑 = 𝑣𝑑,0

exp (9 𝑙𝑛2𝜎𝑑,0/2)𝑌

[2 +
𝑋
𝑌

]

𝑁 = 𝑁0
1
𝑌

where  
  X = exp (9 𝑙𝑛2𝜎𝑑,0) ‒ 2

    (S50)𝑌 = 1 + {1 + exp (9 𝑙𝑛2𝜎𝑑,0/𝐷2
𝑓)}𝐾𝑁0𝑡

Equation S49 and Equation S50 were then used in the appropriate expressions (e.g., the moment 
definition equation, Equation S11) in order to calculate values of interest (values plotted in Figure 
2 of the main text).  

Integral expressions were only evaluated over the particle size domain.  Thus, in essence, 
particle flux during dissolution was accounted for simply by omitting from the solution the 
portion of the size distribution that fell below the lower size boundary. 
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Figure S1. Model results (dot-dashed blue line, from the Sectional Method) compared to 
experimental data (yellow dots) for the calibration procedure used to provide an order-of-
magnitude estimate of the ZnO NP dissolution rate and aggregation rate for all test cases.Data are 
from an experiment with moderately hard water (MHW) at 25oC (compare to Fig. 3b and Fig. 1c 
in the cited work).2  Model inputs: Mean (52 nm), standard deviation (9 nm), equilibrium ion 
concentration (2.04 mg/L), and initial concentration (20 mg/L).  We assume that the 
hydrodynamic diameter of the particles is 60% of their collision diameter, given here as the 
characteristic diameter.21 
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Figure S2. Model results for dissolution of 100 g/m3 of a lognormal population of NPs (low 
skew) with different initial particle sizes under sink conditions (ion concentration in bulk solution 
is set to zero). Solid grey = Analytical Solution, Dot-dashed blue = Sectional Method (SM), 
Dashed orange = Direct Quadrature Method of Moments (DQMOM) with ratio constraints, 
Dashed yellow = DQMOM without ratio constraints, Dotted red = Extended Quadrature Method 
of Moments (EQMOM), Solid green = Direct Simulation Monte Carlo (DSMC).  
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Figure S3. Model results for dissolution of 100 g/m3 of a lognormal population of NPs (low 
skew) with different initial particle sizes for dissolution to equilibrium(ion concentration in bulk 
solution increases until equilibrium is reached, at which point dissolution stops). Dot-dashed blue 
= SM, Dashed orange = Direct DQMOM with ratio constraints, Dashed yellow = DQMOM 
without ratio constraints, Dotted red = EQMOM, Solid green = DSMC.  No analytical solution is 
available for this case.



27

Figure S4. Model results for aggregation of 100 g/m3 of a lognormal population of NPs (low 
skew) with different initial particle sizes.  Dot-dashed blue = SM, Dashed orange = DQMOM 
with ratio constraints, Dotted red = EQMOM, Solid green = DSMC.  Analytical solution not 
shown.
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Figure S5. Error in the EQMOM (dotted red), the DQMOM without ratio constraints (dashed 
orange), the SM (dot-dashed blue), and DSMC (solid green) compared to the analytical solution 
(solid grey) for estimates of the evolution of the (normalized) number concentration during 
dissolution.  Worst-case scenario (“sink conditions”) are assumed in order to maximize possible 
error.  The error calculation is not normalized.  Error remains below 9% for the EQMOM, which 
also largely captures the nature of the dissolution curve.
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Figure S6. Initial particle size distributions in the Sectional Method for the error analysis shown 
in Figure 4.  Distributions were normalized by the bin width so that they could be overlain on the 
continuous distribution as shown. 

Figure S7. Effect of the resolution of the size coordinate on error in the SM for aggregation of 
~50±10 nm NPs.  Error is given relative to the analytical solution (solid grey).Unlike the 
numerical solution for dissolution, which can use an arbitrary binning scheme, the numerical 
solution for aggregation requires the geometric binning scheme defined in Equation 2 (main text). 
Thus q could not be reduced below 1 and the number of bins could not be reduced below 47.
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Figure S8. Initial particle size distributions used in the analysis presented in Figure 5 (main text) 
transformed to be in terms of the internal coordinate, particle mass.  Size distributions expressed 
in terms of mass are more skewed than distributions expressed in terms of diameter.  The solid 
black curve represents the initial size distribution for 50±10 nm NPs in our "base case."

Figure S9. First-order linear inhomogenous equation (Equation 27, main text) fit for the case of 
dissolution to equilibrium (compare to Figure 5).  The equilibrium ion concentration was 
calculated from the Ostwald-Freundlich relation using the initial surface-weighted geometric 
mean diameter.  Benchmark curves (solid grey) in (a) represent the SM validated against the 
EQMOM and the DQMOM.  In (b), curves represent the DQMOM validated against the 
EQMOM.
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