# **Supporting Information**

# Fabrication, performance and mechanism of MgO meso-/macroporous nanostructures for simultaneous removal of As(III) and F in groundwater system

Panpan Gao<sup>a</sup>, Xike Tian<sup>b\*</sup>, Chao Yang<sup>b</sup>, Zhaoxin Zhou<sup>b</sup>, Yong Li<sup>b</sup>, Yanxin Wang<sup>a\*\*</sup>, Sridhar Komarneni<sup>c</sup>

<sup>a</sup>School of Environmental Studies, China University of Geosciences, Wuhan 430074, P.R. China.

<sup>b</sup>Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.

<sup>c</sup>Department of Ecosystem Science and Management, Materials Research Institute, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802

Corresponding Author:

\* E-mail: xktian@cug.edu.cn. Tel /Fax: +86-27-67884574.

\*\* E-mail: yx.wang@cug.edu.cn. Tel / Fax: +86-27-87481030.

## **Experimental Section**

1) One-site Langmuir model

$$q_e = \frac{q_{max}bc_e}{1+bc_e}$$

Where  $q_e \text{ (mg/g)}$  and  $c_e \text{ (mg/L)}$  are the adsorbed amount and concentration at equilibrium, respectively; b (L/mg) represents the Langmuir constant that relates to the affinity of binding sites;  $q_{max} \text{ (mg/g)}$  is the maximum adsorption capacity.

2) Two-site Langmuir model

$$\mathbf{q}_{e} = \frac{q_{1}b_{1}c_{e}}{1+b_{1}c_{e}} + \frac{\mathbf{q}_{2}b_{2}c_{e}}{1+b_{2}c_{e}}$$

Where  $q_1$  and  $q_2$  (mg/g) are the maximum uptake at high and low energy sites, respectively;  $b_1$  and  $b_2$  (L/mg) represent the Langmuir constants that relate to the affinity of binding sites.

3) Freundlich model

$$\ln q_e = \ln k_F + \frac{1}{n} \ln c_e$$

Where  $K_F$  and *n* are the Freundlich constants, which represent the adsorption capacity and the adsorption strength, respectively. The magnitude of 1/n quantifies the favorability of adsorption and the degree of heterogeneity of the adsorbent surface.

4) Pseudo-first-order model

$$\ln (q_e - q_t) = \ln q_e - k_1 t$$

Where  $q_e \text{ (mg/g)}$  and  $q_t \text{ (mg/g)}$  are the amounts of anions adsorbed on MgO at equilibrium and time *t* (min), respectively;  $k_l \text{ (min}^{-1} \text{ )}$  is the rate constant of the pseudo first-order kinetic model.

5) Pseudo-second-order model

$$\frac{\mathrm{t}}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$

Where  $k_2$  (g mg<sup>-1</sup> min<sup>-1</sup>) is the rate constant of pseudo-second-order kinetic model.

6) Elovich model

$$q_t = \frac{1}{\beta} \ln(\alpha\beta) + \frac{1}{\beta} \ln t$$

Where  $\alpha$  and  $\beta$  are Elovich constants, which are related to adsorption rate and surface coverage, respectively.

7) Intra-particle diffusion model

$$\mathbf{q}_t = \mathbf{k}_d t^{1/2} + I$$

Where I (mg/g) is the intercept and  $k_{di} \text{ (mg g}^{-1} \min^{-0.5})$  is the rate constant of the *i* line portion.

### List of Tables :

Table S1. Isotherm parameters for single adsorption of As(III) and F on MgO samples.

- Table S2. Kinetic parameters for single adsorption of As(III) and F on MgO nanostructures.
- Table S3. Intra-particle diffusion model parameters for single adsorption of As(III) and F on MgO nanostructures.

Table S4. O1s of MgO nanostructures before and after As(III)/F adsorption.

### **List of Figures:**

- Figure S1. Effect of contact time on (a) As(III) and (b) F adsorption onto MgO nanostructures at different MgO loadings.
- Figure S2. Effect of initial solution pH on (a) As(III) and (b) F adsorption of MgO nanostructures.
- Figure S3. Effect of coexisting anions on (a) As(III) and (b) F adsorption of MgO nanostructures.
- Figure S4. (a) XPS wide scan spectra of MgO before (the MgO after immersion in water for 24 h) and after adsorption of As(III) and F. (b) Partial spectra of MgO before and after As(III) adsorption. (c) F1s spectra of MgO after F adsorption. High-resolution O1s spectra of MgO (d) before and after adsorption of (e) As(III) and (f) F.
- Figure S5. SEM images of MgO sample (b) before and (a) after adsorption in practical groundwater treatment.
- **Figure S6.** Variation of the removal rates of As(III) and F on MgO in successive cycles in practical groundwater treatment.

|         | _                                    | One-site Langmuir          |      |                |                                         | Two-site Langmuir              |                   |                |                |                | Freundlich     |      |                |  |
|---------|--------------------------------------|----------------------------|------|----------------|-----------------------------------------|--------------------------------|-------------------|----------------|----------------|----------------|----------------|------|----------------|--|
| Anions  | $q_{e,exp}$<br>(mg•g <sup>-1</sup> ) | q <sub>m</sub><br>(mg•g⁻¹) | b    | R <sup>2</sup> | q <sub>1</sub><br>(mg•g <sup>-1</sup> ) | $q_2$<br>(mg•g <sup>-1</sup> ) | $q_m$<br>(mg•g-1) | b <sub>1</sub> | b <sub>2</sub> | R <sup>2</sup> | k <sub>F</sub> | 1/n  | R <sup>2</sup> |  |
| As(III) | 532.098                              | 540.90                     | 0.15 | 0.983          | 271.45                                  | 271.45                         | 542.90            | 0.15           | 0.15           | 0.980          | 112.34         | 0.41 | 0.78           |  |
| F       | 202.8                                | 206.80                     | 0.03 | 0.960          | 207.92                                  | 82.75                          | 290.67            | 0.004          | 0.31           | 0.999          | 29.95          | 0.34 | 0.989          |  |

Table S1. Isotherm parameters for single adsorption of As(III) and F on MgO samples

| Anions  | Dosage<br>(g•L <sup>-1</sup> ) | $q_{e,exp}$<br>(mg•g <sup>-1</sup> ) | Pseudo-first-order                     |                                             |                | Pseudo                                            | Elovich model                   |                |          |       |                |
|---------|--------------------------------|--------------------------------------|----------------------------------------|---------------------------------------------|----------------|---------------------------------------------------|---------------------------------|----------------|----------|-------|----------------|
|         |                                |                                      | k <sub>1</sub><br>(min <sup>-1</sup> ) | q <sub>e,cal</sub><br>(mg•g <sup>-1</sup> ) | R <sup>2</sup> | $k_2$<br>(g•mg <sup>-1</sup> •min <sup>-1</sup> ) | $q_{e,cal}$ $(mg \cdot g^{-1})$ | R <sup>2</sup> | α        | β     | R <sup>2</sup> |
| As(III) | 0.5                            | 12.453                               | 0.087                                  | 11.867                                      | 0.905          | 0.302                                             | 12.214                          | 0.998          | 12.287   | 0.672 | 0.773          |
|         | 0.75                           | 9.085                                | 0.159                                  | 8.654                                       | 0.873          | 0.726                                             | 8.895                           | 0.999          | 984.752  | 1.403 | 0.694          |
|         | 1                              | 6.875                                | 0.154                                  | 6.691                                       | 0.968          | 0.509                                             | 6.837                           | 0.999          | 1458.671 | 1.934 | 0.722          |
| F       | 0.5                            | 18.865                               | 0.067                                  | 18.414                                      | 0.891          | 0.562                                             | 18.146                          | 0.997          | 19.382   | 0.394 | 0.668          |
|         | 1                              | 19.062                               | 0.153                                  | 18.819                                      | 0.990          | 2.205                                             | 18.985                          | 1              | 9038     | 0737  | 0.536          |

 Table S2. Kinetic parameters for single adsorption of As(III) and F on MgO nanostructures

| Degage               | Anions  | Intra-particle diffusion             |        |         |                                      |                |         |                                                 |                |                             |  |  |
|----------------------|---------|--------------------------------------|--------|---------|--------------------------------------|----------------|---------|-------------------------------------------------|----------------|-----------------------------|--|--|
| (g•L <sup>-1</sup> ) |         | $k_{d1}$ (mg/(g•min <sup>1/2</sup> ) | $I_1$  | $R_1^2$ | $k_{d2}$ (mg/(g•min <sup>1/2</sup> ) | I <sub>2</sub> | $R_2^2$ | k <sub>d3</sub><br>(mg/( g•min <sup>1/2</sup> ) | I <sub>3</sub> | R <sub>3</sub> <sup>2</sup> |  |  |
| 0.5                  | As(III) | 1.056                                | 3.778  | 0.895   | 0.354                                | 8.654          | 0.905   | 0.031                                           | 12.156         | 0.750                       |  |  |
|                      | F       | 3.390                                | -2.079 | 0.989   | 0.463                                | 14.188         | 0.850   | 0.022                                           | 19.179         | 0.726                       |  |  |

**Table S3**. Intra-particle diffusion model parameters for single adsorption of As(III)and F on MgO nanostructures

| <b>1 able 54</b> . 015 01 Mg | Table 34. Of sol MgO hanostructures before and after As(iii)/F adsorption |                   |  |  |  |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------|-------------------|--|--|--|--|--|--|--|
|                              | Mg-OH,%, 531.47 eV                                                        | Mg-O,%, 530.51 eV |  |  |  |  |  |  |  |
| MgO-H <sub>2</sub> O         | 45.2                                                                      | 50.8              |  |  |  |  |  |  |  |
| MgO-As(III)                  | 30                                                                        | 27.6              |  |  |  |  |  |  |  |
| MgO-F                        | 40.2                                                                      | 59.8              |  |  |  |  |  |  |  |
|                              |                                                                           |                   |  |  |  |  |  |  |  |

Table S4. O1s of MgO nanostructures before and after As(III)/F adsorption



**Figure S1.** Effect of contact time on (a) As(III) and (b) F adsorption onto MgO nanostructures at different MgO loadings.



**Figure S2.** Effect of initial solution pH on (a) As(III) and (b) F adsorption of MgO nanostructures.



**Figure S3.** Effect of coexisting anions on (a) As(III) and (b) F adsorption of MgO nanostructures.



**Figure S4.** (a) XPS wide scan spectra of MgO before (the MgO after immersion in water for 24 h) and after adsorption of As(III) and F. (b) Partial spectra of MgO before and after As(III) adsorption. (c) F1s spectra of MgO after F adsorption. High-resolution O1s spectra of MgO (d) before and after adsorption of (e) As(III) and (f) F.



**Figure S5.** SEM images of MgO sample (b) before and (a) after adsorption in practical groundwater treatment.



**Figure S6.** Variation of the removal rates of As(III) and F on MgO in successive cycles in practical groundwater treatment.