Supporting information

Acute toxicity of Graphene Nanoplatelets on Biological Wastewater

Treatment Process

Hang N. Nguyen^a, Sarah L. Castro^b, and Debora F. Rodrigues ^{a*}

^a Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-

4003 (USA)

^b NASA Johnson Space Center Microbiology Laboratory, Houston, TX 77058 (USA)

^{a*} Corresponding Author: Debora F. Rodrigues Ph.D.

N136, Engineering Bldg 1

4800 Calhoun Rd, Houston, TX 77204

E-mail: dfrigirodrigues@uh.edu

Phone: +1-713-743-1495 Fax: +1-713-743-4260

Figure S1 - Diagram of the flow of the wastewater at the Sims South Bayou Wastewater Treatment Plant. Red arrow indicates where the activated sludge was collected for this study.

Figure S2 – a) XRD spectrum showing the crystalline structure of Grade C Graphene nanopletelets (2 theta at 26.5); b) TEM image of graphene nanoplatelet (scale bar 100 nm) (provided by XG Science, Inc. U.S.A); c) AFM image and height profile of graphene nanoplatelet after 1 h sonication; d) TGA analysis of graphene nanoplatelets and e) Raman spectroscopy of the Grade C Graphene nanopletelets.

Figure S3 — The top 20 genera with highest abundance in the reactors containing different concentrations of graphene. Results are presented at 0 h and 10 h. The abundance was expressed in term of percentage of total effective reads for each sample (excluding unclassified genera). Less abundant genera were represented as others ($\leq 1\%$).

Figure S4 — The top 10 phylum with the highest abundance in the reactors with different concentrations of graphene. Results are presented at 0 h and 10 h. The abundance was expressed in terms of percentage of total effective sequences in each sample (excluding unclassified phyla). Less abundant phyla were presented as others.

Figure S5 — The top 20 classes with highest abundance in the reactors with different concentrations of graphene. Results are presented at 0 h and 10 h. The abundance was expressed in term of percentage of total effective sequences of each samples (excluding unclassified classes). Less abundant classes were represented as others.

Figure S6 — Sample-size-based rarefaction curves of activated sludge from reactors exposed to different concentrations of Graphene.

Target	Name	Primer (5'-3')	Primer final concent ration (nM)	RT-PCR	References	Regular PCR
Ammonia- oxidizing bacteria (AOB) 16S rRNA	CTO 189-F A/B	GGAGRAAA GCAGGGGA TCG	300	50°C 2mins, 95°C 10mins, 40 cycles of	°C 2mins, °C 10mins, cycles of 1, 2 3, 4 °C 1min, °C 1min and °C 1min	10 min of 95 °C; 35 cycles of 94 °C in 30 s, 55 °C in 40
	CTO 654-R	CTAGCYTT GTAGTTTC AAACGC	300	95°C 1min, 50°C 1min and 60°C 1min		
Ammonium monooxygena se (amoA)	amoA-1F	GGGGTTTC TACTGGTG GT	300	95°C 15mins, 95°C 4mins, 50 cycles of	2, 5-7 4, 8	
	amoA-2R	CCCCTCKG SAAAGCCT TCTTC	300	56°C 30s and 72°C 30s		
Accumulibact er 16S rRNA - genes (PAO)	518-F	CCAGCAGC CGCGGTAA T	50	95°C 3min, 45 - cycles of 95°C ^{9, 10} 30s, 60°C 40s	s, and 72 °C in 1 min; 72 °C for 7 min, and 4 °C infinite	
	PAO846-R	GTTAGCTA CGGCACTA AAAGG	50			
Universal 16S rRNA gene - (Universal)	E8-F	AGAGTTTG ATCCTGGC TCAG	300	95°C 3mins 44 cycles of 11-13 95°C 15s 55°C 1min		
	E533-R	TTACCGCG GCTGCTGG CAC	300			

 Table S1 — Target gene, concentration of primers and thermal cycle

References

- 1. G. A. Kowalchuk, J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley and J. W. Woldendorp, *Applied and Environmental Microbiology*, 1997, **63**, 1489-1497.
- 2. J. Geets, M. De Cooman, L. Wittebolle, K. Heylen, B. Vanparys, P. De Vos, W. Verstraete and N. Boon, *Appl Microbiol Biotechnol*, 2007, **75**, 211-221.
- 3. G. Harms, A. C. Layton, H. M. Dionisi, I. R. Gregory, V. M. Garrett, S. A. Hawkins, K. G. Robinson and G. S. Sayler, *Environmental science & technology*, 2003, **37**, 343-351.
- 4. T. Zhang, L. Ye, A. H. Y. Tong, M.-F. Shao and S. Lok, *Appl Microbiol Biotechnol*, 2011, **91**, 1215-1225.
- 5. J.-H. Rotthauwe, K.-P. Witzel and W. Liesack, *Applied and environmental microbiology*, 1997, **63**, 4704-4712.
- 6. H. M. Dionisi, A. C. Layton, G. Harms, I. R. Gregory, K. G. Robinson and G. S. Sayler, *Applied and Environmental Microbiology*, 2002, **68**, 245-253.
- 7. Y. Aoi, Y. Shiramasa, E. Kakimoto, S. Tsuneda, A. Hirata and T. Nagamune, *Appl Microbiol Biotechnol*, 2005, **68**, 124-130.
- 8. G. F. Wells, H. D. Park, C. H. Yeung, B. Eggleston, C. A. Francis and C. S. Criddle, *Environmental microbiology*, 2009, **11**, 2310-2328.
- 9. M. Winkler, E. R. Coats and C. K. Brinkman, *Water Research*, 2011, 45, 6119-6130.
- S. He, D. L. Gall and K. D. McMahon, *Applied and environmental microbiology*, 2007, 73, 5865-5874.
- 11. E. Nagy, T. Maier, E. Urban, G. Terhes, M. Kostrzewa and E. S. G. o. A. R. i. A. B. on behalf of the, *Clinical Microbiology and Infection*, 2009, **15**, 796-802.
- 12. G. Baker, J. Smith and D. A. Cowan, *Journal of Microbiological Methods*, 2003, 55, 541-555.
- 13. S. Mao, R. Zhang, D. Wang and W. Zhu, *BMC Veterinary Research*, 2012, 8, 237-237.