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Figure S1 ─ Diagram of the flow of the wastewater at the Sims South Bayou Wastewater 
Treatment Plant. Red arrow indicates where the activated sludge was collected for this study.
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Figure S2 – a) XRD spectrum showing the crystalline structure of Grade C Graphene 
nanopletelets (2 theta at 26.5); b) TEM image of graphene nanoplatelet (scale bar 100 nm) 
(provided by XG Science, Inc. U.S.A); c) AFM image and height profile of graphene 
nanoplatelet after 1 h sonication; d) TGA analysis of graphene nanoplatelets and e) Raman 
spectroscopy of the Grade C Graphene nanopletelets. 
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Figure S3 ─ The top 20 genera with highest abundance in the reactors containing different 
concentrations of graphene. Results are presented at 0 h and 10 h. The abundance was expressed 
in term of percentage of total effective reads for each sample (excluding unclassified genera). 
Less abundant genera were represented as others (≤ 1%).



Figure S4 ─ The top 10 phylum with the highest abundance in the reactors with different 
concentrations of graphene. Results are presented at 0 h and 10 h. The abundance was expressed 
in terms of percentage of total effective sequences in each sample (excluding unclassified phyla). 
Less abundant phyla were presented as others.



Figure S5 ─ The top 20 classes with highest abundance in the reactors with different 
concentrations of graphene. Results are presented at 0 h and 10 h. The abundance was expressed 
in term of percentage of total effective sequences of each samples (excluding unclassified 
classes). Less abundant classes were represented as others.



Figure S6 ─ Sample-size-based rarefaction curves of activated sludge from reactors exposed to 
different concentrations of Graphene.



Table S1 ─ Target gene, concentration of primers and thermal cycle

Target Name Primer
(5’-3’)

Primer 
final 

concent
ration 
(nM)

RT-PCR References

Regular 
PCR

CTO 189-F 
A/B

GGAGRAAA
GCAGGGGA

TCG
300Ammonia-

oxidizing 
bacteria 

(AOB) 16S 
rRNA CTO 654-R

CTAGCYTT
GTAGTTTC

AAACGC
300

50oC 2mins, 
95oC 10mins, 
40 cycles of 
95oC 1min, 
50oC 1min and 
60oC 1min

1, 2 3, 4

amoA-1F
GGGGTTTC
TACTGGTG

GT
300Ammonium 

monooxygena
se (amoA)

amoA-2R
CCCCTCKG
SAAAGCCT

TCTTC
300

95oC 15mins, 
95oC 4mins, 
50 cycles of 
94oC 30s, 
56oC 30s and 
72oC 30s

2, 5-7

4, 8

518-F
CCAGCAGC
CGCGGTAA

T
50Accumulibact

er 16S rRNA 
genes (PAO) PAO846-R

GTTAGCTA
CGGCACTA

AAAGG
50

95oC 3min, 45 
cycles of 95oC 
30s, 60oC 40s

9, 10 

E8-F
AGAGTTTG
ATCCTGGC

TCAG
300Universal 16S 

rRNA gene
(Universal) E533-R

TTACCGCG
GCTGCTGG

CAC
300

95oC 3mins
44 cycles of 
95oC 15s
55oC 1min

11-13

10 min of 95 
oC; 35 

cycles of 94 
oC in 30 s, 
55 oC in 40 
s, and 72 oC 
in 1 min; 72 

oC for 7 
min, and 4 
oC infinite
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