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1. Bulk ICP-MS measurements 

Total Ce and La content in bulk soil samples and colloid extracts was determined by ICP-MS 

(7700 series ICP-MS, Agilent Technologies, CA, USA). Bulk soil samples were subjected to 

microwave digestion (Multiwave 3000, PerkinElmer, MA, USA) before ICP-MS 

measurement. Samples were diluted with Milli-Q water prior to ICP-MS analysis. 

 

 

Supplementary Figure 1: Cerium (Ce) versus Lanthanum (La) concentrations (bulk) in different natural soil 

samples collected in Vienna (Austria) (green squares) and in the soils spiked with CeO2 NPs (pink triangles). 

 

Supplementary Figure 2: Cerium (Ce) versus Lanthanum (La) concentrations (bulk) in European soils, sediments 

and suspended particulate matter (SPM). Data obtained from the Geochemical Atlas of Europe, Forum of the 

European Geological Surveys (FOREGS) (Geochemical Atlas of Europe; copyright © 2005 the Association of the 

Geological Surveys of The European Union (EuroGeoSurveys))1 as well as from own measurements (marked with 

*), from a study of the Old Danube River in Vienna (Austria)2 and the soils analyzed in the present study, collected 

within Vienna (Austria). 
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2. Automated scanning electron microscopy (SEM) 

Electron microscopy is one of the most commonly used techniques to measure the size and 

the composition of nanomaterials. It offers very high spatial resolution and the ability to 

determine elemental composition of individual nanoparticles using energy dispersive x-ray 

spectroscopy (EDX). However, the presence of a multitude of organic compounds, 

microorganisms, nano- and micro-particles in complex matrices (e.g. soil samples), and the 

possible excitation of atoms from neighboring particles, make the detection of ENPs very 

challenging and results remain in general on a qualitative level. A major drawback of the 

method is the high time consumption due to manual measurements which results in a rather 

low number of particles that can be investigated. A significant improvement of this technique 

is achieved through the use of automated particle detection methods for identifying particles 

based on contrast differences (e.g. density contrast) and using EDX to determine elemental 

composition of individual particles. Using automated EM, several thousands of individual 

particles can be detected and classified (based on their elemental composition) within a few 

hours. 

In this work, automated scanning electron microscopy (SEM) analysis was employed to 

investigate spiked and pristine soil colloidal extracts. Following the automated particle 

analyses, particles were grouped based on their cerium content (Supplementary Figure 3). A 

population of particles with high cerium content (> 20 wt % Ce) was observed in the spiked 

sample only. The particle size limit of detection (LOD) under the applied conditions was 

around 70 nm (diameter). Assuming particles consisting purely of CeO2, this size translates 

into a mass-per-particle LOD of 1.1 fg Ce, which falls about 1 order of magnitude above the 

mass-per-particle LODs obtained for the spICP-MS (Supplementary Table 3) and spICP-

TOFMS (Supplementary Table 6). For both the spiked and non-spiked samples, a comparable 

amount of ‘low cerium containing’ particles (< 20 wt% Ce) was detected; however, manual 

inspection of the individual spectra of these ‘low cerium containing’ particles revealed no Ce 

signal. The calculated Ce contents, thus, represent an analytical artifact and indicate the 

detection limits of the automated SEM method under the applied operational conditions. 

Nevertheless, our data suggest that the automated algorithm for identifying particles in 

combination with EDX analysis is a promising method for samples where a multitude of 

different types of particles are present.  

However, SEM requires a sample preparation procedure that is more time-consuming, 

complex and susceptible to errors than the simple dilution steps that are required for ICP-

TOFMS. First, automated SEM analysis requires the sample to be diluted in order to avoid 
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particles depositing on top of each other when loaded on the sample holder; at the same time 

the dilution should not be too high in order to avoid having too few particles on the sample 

holder. This trial and error process is dependent upon the properties of the sample (e.g. 

composition, particle size distribution, etc.). In addition, a high content of organic material in 

the sample would cause contamination during the analysis and thus interfere with the 

identification of individual particles with the SEM. This effect was observed during our 

analysis and an oxidation pre-treatment step using hydrogen peroxide was deemed necessary 

in order to reduce the organic content. This additional pre-treatment step increases the risk of 

particle loss and alteration. Finally, the measurement time for one particle in the SEM is in 

the order of 10 s and thus almost 4 orders of magnitudes larger than the corresponding spICP-

TOFMS measurement time (0.3 ms). Furthermore, assuming a ratio of ENPs:NNPs of 1:100 – 

1:1000, it would take 1’000 – 10’000 s to detect one ENP, which makes the quantification of 

ENP in complex matrices using automated EM currently unrealistic. 

 

Supplementary Figure 3: Number of Ce-containing particles and the percentage of Ce content in each particle, 

based on an automated SEM imaging with EDX analysis. The colloid extract without added Ce (Not Spiked) and 

with the addition of CeO2 ENPs at a concentration of 400 mg kg-1 (sample E) in the soil are shown. Samples were 

pre-treated with hydrogen peroxide to remove organic material, which was interfering with the SEM analysis.    

 

Method  

To remove organic material, which may mask the presence of small nanoparticles and cause 

contamination during SEM analyses, 13.5 mL of the colloidal extracts were mixed with 15 

mL of hyperoxide solution (Suprapore Hydrogen Peroxide 30 %, Millipore) in a 100 mL 

glass volumetric flask and were reacted for 36 hours. After that time it was assumed that no 

hydroxyl radicals were left. The volumetric flask was filled up to 100 mL with MilliQ water 

and shaken. An aliquot of the resulting suspension was further diluted with MilliQ to a final 

volume of 100 mL and mass concentration of 10 mg L
-1

. An aliquot of 5 mL from the 
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resulting suspension was filtered through polycarbonate membranes (Nucleopore) with 50 nm 

pore size and were left to dry in polypropyelene containers for at least 48 hours, prior to 

analysis. The filters were coated with a thin layer (~ 10 nm) of Carbon to make them 

electrically conductive. The contrast (atomic weight contrast resulting from backscattered 

electrons) between particles and the background was used to identify particles on a pre-

selected area and EDX analysis was performed on every particle. The elemental composition 

and the particle dimensions were tabulated along with low resolution images (Supplementary 

Figure 4). 

 

Supplementary Figure 4: Automated particle analysis conducted in the SEM. Particles are first identified on a 

selected area (top image). EDX analysis is subsequently conducted on each particle (bottom images).  
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3. Concentration range of CeO2 ENPs spiked to soil samples 

Supplementary Table 1: Total added CeO2 NP concentration for all five samples, the original pristine sample (P) 

(used for training the GBC model) and control sample (O), another pristine soil from the same sample area. Note 

that in all cases the CeO2 NP suspensions were stabilized with Suwanee River Natural Organic Matter (SRNOM) 

before spiking resulting in an added SRNOM concentration of 2 mg kgsoil
-1 TOC. The control sample is a soil 

sample collected at the same site as the soil employed for the spiking experiments. 

Sample CeO2 ENP added [mg kgsoil
-1

] 

P (pristine) 0 

O (control) 0 

A 4 × 10−2 

B 4 × 10−1 

C 4 × 100 

D 4 × 101 

E 4 × 102 
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4. Single-particle ICP-MS analysis of CeO2 ENP spiked and pristine colloid extracts  

Single-element spICP-MS measurements were performed on an Agilent 7700 ICP-MS 

instrument (Agilent Technologies, CA, USA), with 
139

La and 
140

Ce monitored consecutively. 

Samples were measured at a 10,000-fold dilution and a dwell-time of 5 ms and spectra were 

recorded for 60 s. Instrumental settings of the spICP-MS measurements are summarized in 

Supplementary Table 2. Calibration with dissolved Ce and La standards was performed prior 

to sample analysis. The nebulization efficiency was measured in triplicates using a well-

characterized gold 60 nm dispersion (BBI, UK) following the particle frequency method 

described by Pace et al.
3
 The sample flow rate was measured with a TruFlo flow meter 

(GlassExpansion, Australia). 

Supplementary Table 2: Instrument setting for conventional single-particle ICP-MS measurements 

Instrument  Agilent 7700 ICP-MS 

RF power 1550 W 

Plasma gas flow rate 15 L min
-1

 

Carrier gas flow rate 0.8 mL min
-1

 

Dilution gas flow rate 0.4 mL min
-1

 

Nebulizer Micromist 

Isotopes monitored 
139

La or 
140

Ce 

Integration time  5 ms 

Nebulization efficiency 5 % 

Sample flow rate 344 µl min
-1

 

Acquisition time 60 s 

The spICP-MS data processing was done using Matlab R2012b. A threshold for particle 

detection was set at 5 times the standard deviation of the dissolved Ce or La signal, σdiss, 

obtained with an iterative algorithm to separate the background from particle events.
3-5

 The 

resulting mass-per-particle limits of detection (LOD) for Ce and La are listed in 

Supplementary Tables 3 and 4). 
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Supplementary Table 3: Mass-per-particle LODs obtained after applying a threshold for Ce-particles at 5σ 
of the dissolved background distribution for spICP-MS measurements of pristine soil sample (P) used for 
training the GBC model, control sample (O) and the spiked samples (A to E). 

Sample 
CeO2 ENPs added 

[mg kg
soil-1

] 

Ce 5σdiss LOD 

[counts] 

Ce 5σdiss LOD 

[fg] 

Ce NPs detected 

[min
-1

] 

P 0 8.79 0.14 242 

O 0 10.8 0.17 226 

A 4 × 10−2 8.90 0.14 210 

B 4 × 10−1 8.91 0.14 240 

C 4 × 100 8.16 0.13 250 

D 4 × 101 9.01 0.14 397 

E 4 × 102 35.4 0.57 1071 

 
 
Supplementary Table 4: Mass-per-particle LODs obtained after applying a threshold for La-particles at 5σ 
of the dissolved background distribution for spICP-MS measurements of pristine soil sample (P) used for 
training the GBC model, control sample (O) and the spiked samples (A to E). 

Sample 
CeO2 ENPs added 

[mg kg
soil-1

] 

La 5σdiss LOD 

[counts] 

La 5σdiss LOD 

[fg] 

La NPs detected 

[min
-1

] 

P 0 5.66 0.21 86 

O 0 6.26 0.22 125 

A 4 × 10−2 6.28 0.22 74 

B 4 × 10−1 11.9 0.34 48 

C 4 × 100 5.68 0.21 100 

D 4 × 101 6.25 0.22 96 

E 4 × 102 6.30 0.22 94 

Separate measurements on masses 
139

La and 
140

Ce using conventional spICP-MS confirmed 

the presence of Ce and La containing (nano-) particles in all samples (Supplementary 

Figure 5a, b). The natural background is composed of detectable Ce- and La-containing 

particles between 0.15 and 3.1 fg Ce and 0.21 and 1.5 fg La per particle. (Note that the lack of 

information on the total composition, shape or density of the individual natural particles 

makes it impossible to derive a corresponding particle size from the Ce or La mass signal.
4
) 

On average, this corresponds well to the observed bulk Ce:La ratio of 2:1 found in the 

uncontaminated soils (Supplementary Figures 1 and 2) and suggests that this ratio is largely 

maintained even on the single particle level. In the spiked samples, the presence of CeO2 

ENPs is indicated by the detection of higher mass Ce-containing particles with particles 
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containing up to 21 fg Ce (Supplementary Figure 5a), which corresponds to CeO2 ENPs of 

about 180 nm (assuming a spherical particle shape). With increasing amounts of added CeO2 

ENPs, the number of detected Ce-containing particles increases, while the number of La-

particles remains constant (Supplementary Figure 5b) A significant increase is, however, only 

observed at CeO2 ENP concentrations of 40 mg kg
-1

, corresponding to about half of the 

natural background of Ce in the investigated soils (72.6 mg kgsoil
-1

). Even in worst-case 

scenarios, expected concentrations of released CeO2 ENPs are at least one order of magnitude 

below this level.
6
 Most importantly, a distinction between individual Ce-containing NPs was 

not possible based on the results from the conventional spICP-MS. To identify individual Ce-

containing NPs as either natural or engineered we need to measure multiple elements 

simultaneously on each particle.  

 

Supplementary Figure 5: Conventional single-particle ICP-MS analysis. a, Histograms of Ce- and La-
containing single-particle signals from the pristine (top) and a CeO2 ENP spiked soil sample (bottom).  
Added CeO2 ENPs result in the presence of Ce-containing particles of higher mass compared to the pristine 
sample. b, Overview of number of detected  Ce- and La-containing particles in all samples. Samples A to E 
are spiked a 10-fold increase of added CeO2 ENP concentration per sample spanning from 0.04 mg kgsoil-1 
(A) to 400 mg kgsoil-1 (E) and control sample O has no added CeO2 ENPs (Table S1). A significant increase in 
Ce to La ratio is only observed in samples with more than 40 mg kg-1 added CeO2 ENPs (samples D and E).  
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5. Single-particle ICP-TOFMS Measurements 

Single-particle ICP-TOFMS measurements were made on a prototype ICP-TOFMS that 

features the front end (ICP, extraction optics) of an ELAN 6000 ICPMS instrument and a 

TOFWERK® reflectron-TOFMS mass analyzer. A quadrupole notch filter is used between 

ion extraction and TOF mass analysis to guide the ion beam and selectively attenuate major 

background ions (e.g. H2O
+
, 

40
Ar

+
, etc.).  Operating conditions for spICP-TOFMS are 

provided in Supplementary Table 5.  To calibrate single particle masses, standard working 

curves for solutions of 
139

La and 
140

Ce in 1% HNO3 were generated.  To determine the mass 

of water uptake to the plasma, a blank solution was weighed before and after aspiration with 

the pneumatic nebulizer; in addition, the waste drained from the cyclonic nebulizer was 

weighed.  The mass the difference between aspirated and drained solution per unit time was 

taken to be the uptake rate into the plasma.  For single-particle ICP-TOFMS experiments, the 

TOFMS was run at a spectral generation rate of 3333 Hz (300 µs per spectrum) and 120 s of 

data was collected for each sample.  For each TOFMS spectrum, the signal of each m/z 

channel was integrated to give the peak value for each isotope.   

 

Supplementary Table 5: Instrument setting for conventional single-particle ICP-TOFMS measurements 

Instrument  Prototype ICP-TOFMS 

RF power 1400 W 

Outer ICP gas flow (Ar) 16 L min
-1

 

Intermediate ICP gas flow (Ar) 1.1 L min
-1

 

Nebulizer gas flow (Ar) 1.2 L min
-1

 

Sample flow rate 750 µl min
-1

 

Liquid uptake rate to ICP 34 µL min 

Mass range 7 – 254 amu 

Isotopes attenuated with notch filter 
14

N
+
, 

16
O

+
, H2O

+
, 

40
Ar

+ 

Spectral acquisition time resolution 300 µs 

Acquisition time 120 s 

 

Data analysis of the spICP-TOFMS peak values was accomplished with LabVIEW
®
.  Briefly, 

a peak detector algorithm was used to find all 
140

Ce single-particle events with a peak value 

greater than 2 counts and all found events were integrated across 900 µs (i.e. 3 mass-spectral 

acquisition data points) to ensure complete integration of single-particle events split between 

adjacent acquisition windows (the typical duration of a single-NP is ~300 µs).  The threshold 

value of 2 counts used for single-particle event finding is low enough that no single-NP 

events were missed and, indeed, some false events due to fluctuation of the background were 
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found.  Background signals (not associated with single-particle events) were also integrated 

across three data points (i.e. across 900-µs). A histogram of the found 
140

Ce single-particle-

event signals combined with integrated background noise signals was created.  The 

background portion of this histogram was fit to a Gaussian to determine the standard 

deviation of the dissolved background signal, diss (Supplementary Figure 6). The entire 

histogram was then thresholded at a count value of 5diss to separate detectable Ce-NPs from 

background signals.  The threshold for Ce-NP detection depended on the amount of dissolved 

Ce in each sample, and ranged from 4.3–6.9 ion counts (0.10–0.17 fg Ce) (Supplementary 

Table 6).  For machine learning studies, the signals for the isotopes of interest were integrated 

across the same time windows as each identified Ce-NP signal.  For manual ENP vs. NNP 

classification, the same 5diss thresholding process was used to identify 
139

La signals above 

the mass-per-particle LOD.   

 

Supplementary Figure 6: Histogram of 140Ce-background in the pristine soil sample (P) fitted to a Gaussian 
to determine diss.  
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Supplementary Table 6: Mass-per-particle LODs obtained after applying a threshold for Ce-particles at 5σ 
of the dissolved background distribution for spICP-TOFMS measurements pristine soil sample (P) used for 
training the GBC model, control sample (O) and the spiked samples (A to E). 

Sample 
CeO2 ENPs added 

[mg kg
soil-1

] 

Ce 5σdiss LOD 

[counts] 

Ce 5σdiss LOD 

[fg] 

Ce NPs detected 

[min
-1

] 

P 0 4.36 0.11 544 

O 0 5.68 0.14 438 

A 4 × 10−2 6.16 0.15 336 

B 4 × 10−1 5.93 0.15 328 

C 4 × 100 4.28 0.10 492 

D 4 × 101 6.94 0.17 589 

E 4 × 102 6.00 0.15 1912 

 

As shown in Supplementary Figure 7, La is not detected in many of the low intensity natural 

Ce-containing nanoparticles events.  This poor correlation of La and Ce at low Ce intensities 

is a result of La signal near or below the mass-per-particle LOD because La is about half as 

abundant as Ce in the NNPs.  For manual Ce-NNP vs. Ce ENP classification, only Ce single-

particle events with more than 20 counts were considered; above this signal threshold, the Ce 

and La signals are well correlated and are no longer significantly affected by ion-counting 

statistics and the combined LODs of Ce and La.  As shown in Supplementary Figure 7, good 

correlation between the presence of Ce and La in Ce-NNPs is apparent in the histograms.  As 

CeO2 ENPs are spiked into the soil extract containing Ce-NNPs, more Ce-NP events are 

detected without an accompanying 
139

La signal, which is a characteristic of pure CeO2 ENPs.   

 

Supplementary Figure 7: a, In the pristine soil sample, Ce-NPs are detectable above ~6  counts.  However, 
La signals are often not above the detection limit for low-intensity Ce-containing NP signals.  As the single-
particle Ce signal increases, the proportion of Ce-NPs that contain detectable levels of La increases to unity.  
The fact that La detectability increases with the intensity of Ce indicates that ion counting statistics are 
limiting the detection of La for all Ce-containing NPs.  b, If a threshold of 20 counts for Ce is used almost all 
Ce-NPs have detectable levels of La.  c, For the soil sample spiked with 40 mg kg-1 of CeO2 ENPs, almost the 
same number—and a similar distribution shape—of Ce+La NPs (blue bars) are detected compared to the 
control with no CeO2 ENPs (b).  The rest of the Ce-NP signals (visible orange bars) can therefore be 
classified as CeO2 ENPs. 
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6.  Machine Learning - Detailed description 

 

A supervised gradient decision tree boosting classification (GBC) machine learning model 

was developed to classify individual particles as ENP or NNP. GBC is an ensemble machine 

learning algorithm in which decision trees are sequentially improved through a forward stage-

wise process.
7
 Data employed to train the model consisted of several thousand multi-element 

spICP-TOFMS signals from reference suspensions containing NNPs (natural soil colloid 

extract) or CeO2 ENPs only. To improve the general model performance and prevent over 

fitting, which occurs when unimportant features are employed to train the model, several 

feature selection steps were applied. First, 25 isotopes were selected as potential relevant 

features for predictions (see list of element in Supplementary Figure 8) and the spICP-

TOFMS traces were extracted for these elements for all Ce-particle signals. Recursive feature 

elimination with cross validation (RFECV) was employed to identify the elements critical to 

prediction (Figure 3, main text).
8
 During RFECV, the minimum number of training features 

required to maximize model performance is identified.
8, 9

 Training features that contain little 

or no predictive information are ‘trimmed’ from the training database. Once the optimal 

feature set composition is identified for a given model run, a feature mask was applied to 

remove non-optimal features from both the training and holdout sets. Following RFECV, a 

grid search hyper parameter optimization with cross validation (GSHPOCV) was performed 

to identify the best performing combination of model parameters (i.e. the parameter 

combination that resulted in the highest R
2
 cross-validation score).

9
 Pedregosa et al.

9
 and 

Goldberg et al.
8
 provide critical information about RFECV and GSHPOCV. The generic 

classification performance (i.e. the ability to classify data not included within the training set) 

was evaluated using an iterative holdout set partition and validation scheme, and yielded a 

weighted F1 score of 98%. 
8
 Aggregated performance results from 1000 model runs are 

included in Supplementary Figure 9. 
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Supplementary Figure 8: Correlation of individual isotopes to each other and towards the classification. 
Blue “-“ represent correlations below 0.01 and red “-“ represent correlations smaller than -0.01. 

Once the optimum feature set and optimum parameters have been identified the model is re-

trained. This final trained version of the GBC model is then used to classify data outside the 

training set, namely the spICP-TOFMS signals of the mixed NNP and ENP samples (colloid 

extracts of natural soil spiked with different concentrations of CeO2 ENPs). 
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Supplementary Figure 9: Aggregate model performance (F1-Score) to predict the NP classification of the 
cross validation test fold as a function of the number of features employed to train. Each box plot represents 
aggregated model scores for five cross validation iterations for all 1000 model runs. This results in 5000 
data points for each feature set size. From visual inspection, only marginal improvements in prediction 
performance are gained past 8-11 features. 

 

 

Supplementary Figure 10: Aggregate performance of the model in predicting the ENP classification for the 
holdout set as a function of the number of RFECV-selected features employed to train the model. The best 
median performance to predict the classification was obtained when all features were employed to train 
(median = 0.992732543). However, the optimal feature set size using the optimality criteria considering the 
feature set size, the median performance, the variance, and the frequency of observation of that feature set, 
was 17 features (median = 0.99128025). The feature set size was never below 2, indicating that Ce and La 
were always required to optimize prediction performance. 
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Supplementary Table 7: Aggregate holdout performance and optimality score by feature set size for 1000 model 

runs.  

Group Quartile 1 Median Quartile 3 
Inner quartile 

range 

Number 

observed 

in group 

Optimality 

score 

2 0.983287165 0.984014027 0.98474081 0.001453645 4 1398.203435 

3 0.984014162 0.98691913 0.986920678 0.002906516 9 1045.844173 

4 0.984013352 0.989827194 0.991279733 0.007266382 9 312.8274962 

5 0.986192911 0.989826936 0.990916187 0.004723275 14 598.9016168 

6 0.986194519 0.988373666 0.990553206 0.004358687 15 580.3141667 

7 0.986919573 0.988373666 0.992733096 0.005813523 15 372.934563 

8 0.986921341 0.98982513 0.99128025 0.004358908 29 840.1789777 

9 0.988008594 0.989826678 0.991279955 0.003271361 24 823.5331836 

10 0.988371552 0.989827194 0.991280618 0.002909066 31 1076.586024 

11 0.986921341 0.989826678 0.992733342 0.005812 29 458.2690513 

12 0.986556364 0.989827108 0.99273285 0.006176486 40 545.2277167 

13 0.988374157 0.989827538 0.992369792 0.003995635 34 661.2874148 

14 0.98982513 0.989827194 0.99273285 0.00290772 47 1166.42759 

15 0.988372978 0.991279733 0.993096794 0.004723816 72 1025.06643 

16 0.989825517 0.991279992 0.992733342 0.002907825 72 1561.161817 

17 0.98982599 0.99128025 0.992733342 0.002907352 85 1734.906222 

18 0.98982599 0.992006427 0.994186489 0.004360499 88 1130.210926 

19 0.98982599 0.99128025 0.994186489 0.004360499 80 974.1004702 

20 0.989827366 0.99128025 0.994186268 0.004358902 75 867.8761493 

21 0.989827194 0.992732235 0.994186489 0.004359295 65 715.2299725 

22 0.989826678 0.992732235 0.994186047 0.004359368 69 724.7208106 

23 0.989463622 0.992006427 0.994549702 0.00508608 48 413.633496 

24 0.989823192 0.991279992 0.994186489 0.004363297 38 366.0675894 

25 0.99018997 0.992732543 0.99346021 0.00327024 8 98.56847405 

 

The following optimality criterion was employed to determine the optimal number of 

features.  

 

𝒐𝒑𝒕𝒊𝒎𝒂𝒍𝒊𝒕𝒚
𝒊

=  
𝟏

𝒊
∗  

𝟏

𝒎𝒆𝒅𝒊𝒂𝒏 𝒑𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆
𝒊

∗  
𝟏

𝑰𝑸𝑹𝒊

∗ # 𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅𝒊   Supplementary Equation 1 

 

Where 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦𝑖 is the optimality score for feature set size 𝑖,  𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖 is 

the median classification performance for feature set size 𝑖, 𝐼𝑄𝑅𝑖 is the inner quartile range 

for the classification performance for feature set size 𝑖, and # 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖  is the number of 

times that a feature set of size 𝑖 was selected by RFECV as the optimum feature set size. 
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Supplementary Figure 11: Frequency of features included for the prediction of ENP versus NNP through 
the RFECV (in percent of number of model runs). 55Mn and 25Mg were determined to be exclusively 
background elements and removed from the assessment prior to training. Observation frequency perfectly 
correlates with the feature set composition for each size (i.e., a feature set size of 5 chosen by RFECV always 
contains the 140 Ce, 139 La, 208 Pb, 88 Sr, and 90 Zr). Other REEs (e.g. Nd, Pr and Th), which are strongly 
inter-correlated in the NNPs, but absent in the ENPs, were infrequently identified as critical during RFECV. 
Due to their strong correlation with La (Supplementary Figure 8) the presence of any of these four isotopes 
in a particle signal does not provide new unique information for the classification. 

The machine learning analysis was performed using python 2.7.10 and the scikit-learn 

package 0.17.0. 
9
 In scikit-learn, the GBC method employs regression decision trees for both 

classification and regression tasks, as it successively trains regression trees to maximally 

correlate with the negative gradient for a given loss function at each stage in a steepest 

descent procedure.
9
 Through this process, the model iteratively improves its ability to classify 

observations modeled poorly by the previous steps. Other machine learning methods were 

investigated (random forest, adaptively boosted decision trees, and decision trees) before 

selecting GBC on the basis of its consistently higher classification performance.  
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