Supporting Information (SI) on

Mechanistic insights on the decontamination of Th(IV) on graphene

oxide-based composites by EXAFS and modeling techniques

Yubing Sun^{a,b*}, Xiangxue Wang^{a, c}, Wencheng Song^b, Songhua Lu^a, Changlun

Chen^a, Xiangke Wang ^{b,c,d}

^a Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei,

230031, Anhui, P.R. China

^b School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, P.R. China

^c School for Radiological and Interdisciplinary Sciences, Soochow University and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 215123, Suzhou, P.R. China

^d NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

*: Corresponding author. Phone: +86-551-65593308; Fax: +86-551-65591310; E-mail: <u>sunyb@ipp.ac.cn</u> (Y. Sun).

Submitted to Environmental Science: Nano

Supplemental Information, 6 pages with 3 Figures and 4 Tables

Pseudo-first-order and pseudo-second-order kinetic models. The linear equations of pseudo-first-order and pseudo-second-order kinetic models were described as Eqns.

(S1)^{S1} and (S2)^{S2}:

$$\ln(q_e - q_t) = \ln q_e - k_l \times t \tag{S1}$$

$$t/q_t = 1/(k_2 \times q_e^2) + t/q_e$$
 (S2)

where q_e and q_t (mg/g) are the amount of Th(IV) adsorbed at equilibrium and at time t, respectively. k_1 and k_2 are the pseudo-first-order and pseudo-second-order kinetic rate constants, respectively.

Figure S1. Adsorption kinetics of Th(IV) on amidoxime/graphene oxide composites

fitted by pseudo- first-order (A) and pseudo-second-order (B) kinetic models

C_0	Pseudo-first-order kinetic model			Pseudo-second-order kinetic model		
(mg/L)	q _e (mg/g)	$k_1(h^{-1})$	R ²	q _e (mg/g)	k ₂ (g/mg/h)	R ²
5.0	0.0032	0.033	0.0362	2.498	160.16	1
10.0	0.0374	0.0744	0.1406	4.97	11.566	1
20.0	0.4501	0.1684	0.6044	10	2.439	1

Table S1 Optimized parameters of pseudo- and pseudo-second-order kinetic model

Distribution of Th(IV) speciation. The distribution of Th(IV) species under different

pH conditions was simulated by Visual MINTEQL 2.6 mode.^{S3}

Figure S2. Distribution of Th(IV) species in aqueous solutions, $C_0 = 10 \text{ mg/L}$.

Table S2.	The thermody	ynamic equ	ilibrium pai	rameters of Th	(IV) in ac	queous solutions

Reactions	Log K	Ref.
$Th^{4+} + H_2O = ThOH^{3+} + H^+$	-3.86	(S4)
$Th^{4+} + 2H_2O = Th(OH)_2^{2+} + 2H^+$	-8.01	(S4)
$Th^{4+} + 3H_2O = Th(OH)_3^+ + 3H^+$	-12.99	(S4)
$Th^{4+} + 4H_2O = Th(OH)_4^0(aq) + 4H^+$	-17.16	(S4)

Langmuir and Freundlich Equations. The Langmuir and the Freundlich equation

can be expressed by Eqns. (S3)^{S5} and (S4)^{S6}:

$$\frac{C_e}{Q_e} = \frac{1}{Q_m \times K_L} + \frac{C_e}{Q_m}$$
(S3)

$$Q_e = K_f \times C^n \tag{S4}$$

where Qe (mg/g) and Ce (mg/L) are the amount of adsorbed Th(IV) by amidoxime/graphene oxide composites and the equilibrium concentration in solution. K_f (mg¹⁻ⁿg⁻¹Lⁿ) and *n* refer to an empirical constants related to adsorption capacity and the Freundlich exponent related to isotherm nonlinearity.

Table S3. Parameters of Langmuir and Freundlich models for Th(IV) adsorption on

	Langmuir			Freundlich		
	K_a (L/mg)	q_{max} $(mg'g)$	<i>R</i> ²	$\frac{\ln K_F}{(\mathrm{mg}^{\prime}\mathrm{g})/(\mathrm{m}^{\prime}\mathrm{g})}$	l/n $(g/g)^n$	<i>R</i> ²
293 K	1.095	123.46	0.996	4.08	0.405	0.987
313 K	0.947	140.84	0.999	4.13	0.413	0.967
333 K	0.859	163.93	0.999	4.24	0.403	0.967

amidoxime/graphene oxide composites at pH 2.0 and I = 0.01 mol/L NaCl

Calculation of Thermodynamic Parameters. The thermodynamic parameters (e.g., ΔG^0 , ΔH^0 and ΔS^0) of Th(IV) sorption on amidoxime/graphene oxide composites were calculated by Eqns. (S5) and (S6):

$$\Delta G^{0} = -RT ln K_{d}^{0} = \Delta H^{0} - T \times \Delta S^{0}$$

$$\ln K_{d}^{0} = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{RT}$$
(S5)
(S5)

where R and T are the ideal gas constant (8.314 J/(mol·K)) and temperature in Kelvin, respectively. The value of $\ln K_d^0$ can be calculated from the plot of $\ln K_d$ vs. 1/T (Figure S3).

Figure S3. The plot of $\ln K_d vs Ce$ (A) and $\ln K^0 vs. 1/T$ (B) of Th(IV) adsorption on

amidoxime/ graphene oxide composites

Temperature	$\Delta G^{\theta}(kJ/mol)$	Δ H ⁰ (kJ/mol)	$\Delta S^{\theta}(\mathbf{J}/(\mathbf{mol}\cdot\mathbf{K}))$
293 K	-27.41		
313 K	-30.01	12.493	136.06
333 K	-32.86		

graphene oxide composites at pH 2.0 and I = 0.01 mol/L NaCl

References

S1. S. Lagergren, Handlingar, 1898, 24, 1-39.

S2. Y. S. Ho and G. Mckay, Chem. Eng. J., 1998, 70, 115-124.

S3. H. P. van Leeuwen, Dynamic aspects of in situ speciation processes and techniques, In *In situ monitoring of aquatic systems chemical analysis and speciation*;

Buffle J., Horvai G., Eds, John Wiley and Sons, Chichester, 2000.

- S4. L. Cromieres, V. Moulin, B. Fourest, R. Guillaumont and E. Giffaut, *Radiochim. Acta*, 1998, 82, 249-256.
- S5. I. Langmuir, J. Am. Chem. Soc., 1918, 40, 1361-1403.
- S6 H. M. F. Freundlich, J. Phys. Chem., 1906, 57, 385-470.