Nanostructured ZnFeZr oxyhydroxide precipitate as efficient phosphate adsorber in waste water: understanding the role of different material-building-blocks

Michael Schneider,^{a,b,*} Asya Drenkova-Tuhtan,^c Wojciech Szczerba,^{d,e} Carsten Gellermann,^a Carsten Meyer,^c Heidrun Steinmetz,^f Karl Mandel^{a,b,*}, Gerhard Sextl^{a,b}

* Corresponding authors:

michael.schneider@isc.fraunhofer.de, karl.mandel@isc.fraunhofer.de

Author affiliations:

^a Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Wuerzburg, Germany.

- ^b University of Wuerzburg, Chair of Chemical Technology of Materials Synthesis, Roentgenring 11, 97070 Wuerzburg, Germany.
- ^c University of Stuttgart, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, Bandtaele 2, 70569 Stuttgart, Germany.
- ^d Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
- ^e Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
- ^e University of Kaiserslautern, Department Resource Efficient Wastewater Technologies, Paul-Ehrlich-Str. 14, 67663 Kaiserslautern, Germany.

Supplementary Information

S1 – Adsorption Kinetics

Table S1: Adsorption rate constants, equilibrium loads and correlation coefficients of the pseudo-first-order and

pseudo-second-order kinetic models for all samples.

	P	seudo-first-ord	er	Pseudo-second-order			
Sample	k_1	$\mathbf{q}_{\mathbf{e}}$	R ²	k ₂	q _e	R ²	
	1/min	mg/g	-	g/(mg·min)	mg/g	-	
1	0.112	2.736	0.978	0.141	18.65	0.999	
2	0.062	3.526	0.944	0.069	21.71	0.999	
3	0.056	2.041	0.991	0.119	15.73	0.999	
4	0.076	2.314	0.969	0.133	21.58	0.999	
5	0.085	3.064	0.995	0.100	17.43	0.999	
6	0.046	1.416	0.948	0.146	6.414	0.998	
7	0.047	1.653	0.949	0.140	27.97	0.999	
8	0.045	3.559	0.982	0.053	12.88	0.998	

S2 – Adsorption Isotherms:

Table S2: Freundlich,	Langmuir and BET	equation paramet	ers of phosphate	adsorption for a	ll samples.
-----------------------	------------------	------------------	------------------	------------------	-------------

	Freundlich		Langmuir			BET			
Sample	K _F (mg/g)/ (mg/L) ⁿ	n -	R ²	q _m mg∕g	K _L L/mg	R ²	K _{bet}	q _{max} mg/g	R ²
1	11.00	0.231	0.974	19.19	1.493	0.965	331	5,032	0,924
2	13.87	0.212	0.980	20.26	4.277	0.990	1822	2,073	0,647
3	9.566	0.128	0.915	12.34	5.689	0.987	1647	2,074	0,922
4	13.79	0.191	0.941	19.82	4.089	0.981	1,98	3,797	0,912
5	10.03	0.196	0.996	14.77	6.132	0.988	765	2,127	0,874
6	0.264	1.128	0.455	8.368	0.056	0.094			
7	7.275	0.406	0.989	17.18	1.266	0.948	134	2,729	0,792
8	5.269	0.296	0.946	11.70	0.632	0.938	52,6	1,297	0,723

Figure S1: Phosphate adsorption isotherm of sample 2 at room temperature and pH 7 - 8 developed with Freundlich, Langmuir and BET models (q_e = amount of adsorbed phosphate in mg per gram adsorber at equilibrium; C_e = concentration of phosphate in the solution at equilibrium)

Figure S2: Phosphate adsorption isotherm of sample 3 at room temperature and pH 7 - 8 developed with Freundlich, Langmuir and BET models (q_e = amount of adsorbed phosphate in mg per gram adsorber at equilibrium; C_e = concentration of phosphate in the solution at equilibrium)

Figure S3: Phosphate adsorption isotherm of sample 4 at room temperature and pH 7 - 8 developed with Freundlich, Langmuir and BET models (q_e = amount of adsorbed phosphate in mg per gram adsorber at equilibrium; C_e = concentration of phosphate in the solution at equilibrium)

Figure S4: Phosphate adsorption isotherm of sample 5 at room temperature and pH 7 - 8 developed with Freundlich, Langmuir and BET models (q_e = amount of adsorbed phosphate in mg per gram adsorber at equilibrium; C_e = concentration of phosphate in the solution at equilibrium)

Figure S5: Phosphate adsorption isotherm of sample 6 at room temperature and pH 7 - 8 developed with Freundlich, Langmuir and BET models (q_e = amount of adsorbed phosphate in mg per gram adsorber at equilibrium; C_e = concentration of phosphate in the solution at equilibrium)

Figure S6: Phosphate adsorption isotherm of sample 7 at room temperature and pH 7 - 8 developed with Freundlich, Langmuir and BET models (q_e = amount of adsorbed phosphate in mg per gram adsorber at equilibrium; C_e = concentration of phosphate in the solution at equilibrium)

Figure S7: Phosphate adsorption isotherm of sample 8 at room temperature and pH 7 - 8 developed with Freundlich, Langmuir and BET models (q_e = amount of adsorbed phosphate in mg per gram adsorber at equilibrium; C_e = concentration of phosphate in the solution at equilibrium)