Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

Arsenic adsorption by iron oxide nanoparticles confined in mesoporous silicates: effect of the host pore structure

Xiaolin Zhang,^a Yihan Wang,^a Xiaofeng Chang,^b Peng Wang^b, and Bingcai Pan,^{*a}

^a State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

^b National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China

* To whom correspondence should be addressed E-mail: <u>bcpan@nju.edu.cn</u>(B. Pan) Tel: +86-25-8968-0390

Adsorbent -	R^2		
	Langmuir model	Freundlich model	
Fe@MCM-41	0.996	0.959	
Fe@SBA-15	0.994 0.944		
Fe@MSU-F	0.976	0.927	

Table S1. Adsorption isotherm fitting parameters of As(V) by Fe@MPS

Table S2. Comparison of adsorption capacity with various iron oxide adsorbents

Adsorbent	Capacity (mg/g)	Reaction conditions	Ref	
Fe ₃ O ₄ nanoparticle	3.7	pH 2, initial [As(V)] =1.5 mg/L	S1	
Fe ₃ O ₄ , Fe ₃ O ₄ -CTAB	23 for Fe ₃ O ₄ -CTAB; 7.6 for Fe ₃ O ₄	pH 6.0, initial [As(V)]=7 mg/L	S2	
Iron oxide@CaCO ₃	270.27	pH 6.8, initial [As(V)]=30 mg/L	S3	
Ferrihydrite	17.4 mg/g-Fe	_	S4	
Schwertmannite	21.5 mg/g-Fe	pH 7.0 ± 0.5,		
Goethite	6.04 mg/g-Fe			
Chitosan-goethite	11.0 mg/g at pH=5; 3.7 mg/g at pH=9.	Initial [As(V)]=50 mg/L	S5	
Magnetite NPs (35 nm)	16.1 mg/g at 298K	pH 5.0, intial [As(V)]=60 mg/L	S6	
Fe@MPS	24~74 mg/g-Fe at 298K	pH 4.0, initial [As(V)]=2 mg/L	This study	

Table S3. Basic parameters of realistic local lake water used in this study

Parameters	nU	Turbidity	TOC	Conductivity	DO
	pm	(NTU)	(mg/L)	(µS/cm)	(mg/L)
Value	7.2±0.1	6.24±0.4	5.6±0.5	423±25	8.3±0.7

Figure S1. XRD patterns of Fe@MPS nanocomposites

Figure S2. XPS spectra of three Fe@MPS nanocomposite adsorbents

Figure S3. Adsorption isotherm of As(III) onto Fe@MPS (25 °C, dosage of adsorbents: 0.4 g/L, pH=6.5)

Figure S4. Adsorption of As(V) onto Fe@MPS at pH 6.5 (25 °C, dosage of adsorbents: 0.40 g/L). (a) Isotherm and (b) kinetic data (initial [As(V)]: 0.1 mg/L)

Figure S5. Effect of pH (a, 24 h) and contact time (b, pH=2) on iron leaching from Fe@MPS nanocomposites

Figure S6. Adsorption kinetic of As(V) in realistic lake water by Fe@MPS (Lake water were sampled from Yangshan Lake, Nanjing, China, initial $[As(V)]=100 \mu g/L$, dosage of adsorbents: 0.40 g/L, 25 °C)

References

- S1. S. R. Chowdhury and E. K. Yanful, J. Environ. Manag., 2010, 91, 2238-2247.
- S2. Y. Jin, F. Liu, M. Tong and Y. Hou, J. Hazard. Mater., 2012, 227, 461-468.
- S3. M. S. Islam, W. S. Choi, B. Nam, C. Yoon and H.-J. Lee, Chem. Eng. J., 2017, 307, 208-219.
- S4. J. H. Park, Y.-S. Han and J. S. Ahn, Water Res., 2016, 106, 295-303.
- S5. J. He, F. Bardelli, A. Gehin, E. Silvester and L. Charlet, Water Res., 2016, 101, 1-9.
- S6. C.-H. Liu, Y.-H. Chuang, T.-Y. Chen, Y. Tian, H. Li, M.-K. Wang and W. Zhang, *Environ. Sci. Technol.*, 2015, 49, 7726-7734.