Electronic Supplementary Information

Adsorption-intensified degradation of organic pollutants over

bifunctional α-Fe@carbon nanofibres

Zhigao Zhu^{*a*}, Ying Xu^{*a*}, Benyu Qi^{*b*}, Gaofeng Zeng^{**b*}, Ping Wu^{*b*}, Guojuan Liu^{*b*}, Wei Wang^{**a*}, Fuyi Cui^{*a*} and Yuhan Sun^{*b*}

^a State Key Laboratory of Urban Water Resource and Environment, Harbin Institute

of Technology, Harbin 150090, China. E-mail: <u>wangweirs@hit.edu.cn (W. W.)</u>

^b CAS key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai

Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210,

China. TEL/FAX: +86 21 20350958; E-mail: zenggf@sari.ac.cn (G. Z.)

Experimental

Materials

Polyacrylonitrile (PAN *Mw*=80,000) was used as received from Jilin Carbon Group, China. *N*,*N*-dimethylacetamide (DMAc), iron chloride (FeCl₃), peroxymonosulfate (PMS), metheylene blue (MeB), methyl orange (MO), Cango red (CR) and phenol were purchased from Aladdin Chemical Reagent Co., Ltd., China. Sodium hydroxide (NaOH) and hydrochloric acid (HCl) were purhased from Xilong Chemical Co., Ltd. All chemicals were of analytical grade and were used as received without further purification.

Preparation of activated composite nanofibers

PAN/FeCl₃ hybrid nanofibers were fabricated with co-electrospinning of polymer with iron precursors. Various concentration of Fe³⁺ were added into the electrospinning solution, the weigt ratio of FeCl₃/PAN was fixed at 0:10, 1:9, 1:3 and 1:1. Take 1:1 as a example, FeCl₃ (3.0 g) was added into 47.0 g DMAc with vigorous stirring for 30 min with a rate of 200 r/min (MYP11-2, Shanghai Mei Yingpu Instrument and Meter Manufacturing Co,. Ltd), followed by adding 3.0 g of PAN powder stirred at room temperature with additional 12 h to get homogeneous solution. The electrospinning processes were performed at a fixed positive voltage of 12 kV and a fixed feed rate of 0.25 mL h⁻¹ with a distance of 10 cm between the needle tip to the round collector. All the chamber temperature and relative humidity during electrospinning were 23 ± 2 °C and 42 ± 3 %. Finally, the electrospun FeCl₃/PAN nanofiber membrane were collected on a aluminum foil then calcined at 700 °C, 900 °C and 1100 °C in N₂ flow with a heating rate of 2 °C/min The carbon nanofibers calcined at different temerature are referred to Fe@CNF700, Fe@CNF900 and Fe@CNF1100. Subsequently, the obtained Fe@CNF1100 was immersed into the KOH aqueous solution (30 wt%) with slightly stirring for 6 h, following dried at 60 °C under vacuum for 3 h. Finally, the activated Fe@CNF1100 was carbonized at 900 °C for 30 min in N₂ flow, and washed with 0.1 M HCl at least 3 times, the black activated Fe@CNF1100 were obtained.

Oxidative degradation

For the organic dyes degradation tests, methylene blue (MeB) was chosen as the model contaminant. In general, A-Fe@CNF1100 (10 mg) and PMS (25 g/L of 2 mL) were mixed in MeB solution (10 mg/L, 100 mL) with vigorous stirring at room temperature in light. For the purpose of comparison, the degradation performance of Fe@CNF1100 or PMS alone, as well as the combinations of Fe@CNF700+ PMS, Fe@CNF900+ PMS and Fe@CNF1100+ PMS were also tested under the same conditions. For the degradation of MO, CR and phenol, the pollutant concentration and reaction conditions are the same as MeB. The dye concentration in the solution after filtered by cellulose acetate membrane with a pore size of 0.45 μ m was monitored by UV-vis spectra (Shimadzu UV spectrophotometer, UV-1800) with an interval of 1-10 min. The concentration of phenol was analyzed using a Varian high performance liquid-chromatography (HPLC) with a UV detector set at 270 nm. AC-18 column was used to separate the organics while the mobile phase made of 30% CH₃CN and 70% water was at a flow rate of 1 mL/min.

During the reusability of catalyst, an external magnet wrapped by aluminum foil was employed to collect A-Fe@CNF1100 from liquid. Then the catalyst was reloaded to the fresh MeB solution by remove the magnet from aluminum foil. Each reaction time is 15 min.

Characterizations

The morphology of CNFs was measured by a scanning electron microscope (SEM, Zeiss SUPRA 55 SAPPHIRE). TEM, HRTEM, EDS mapping and selected-area electron diffraction patterns were observed by transmission electron microscope (JEM-2100F, JEOL Ltd.) at an acceleration voltage of 200 kV. Crystal structure of samples were measured by X-ray diffractometer (XRD, Rigku, ultima IV) using a Cu $K\alpha$ (0.1504 nm) radiation under the conditions of 40 mA and 40 kV. The surface area and pore size distribution of the samples were derived from N₂ sorption measurements using an automatic micropore physisorption analyzer (Tristar 3020, USA). Before measurement, the samples were degassed at 300 °C for at least 10 h under 0.133 Pascal pressure. Magnetic properties were measured with a vibrating sample magnetometer (VSM, Lake Shore 7304). The near-surface chemical information of materials were analyzed by X-ray photoelectron spectroscopy (XPS, K-Alpha, Al Ka radiation, 1486.6 eV, 12 kV, 3 mA). Raman spectrum was obtained by using a micro-Raman spectroscopy system (inVia-Reflex, Renishaw, Co., UK). The EPR spectra was analyzed and exported by Bruker Xeon software. The DMPO radical adducts were identified by hyperfine splitting constants of DMPO-OH (\Box_N =14.8, α_H =14.8) and DMPO-SO₄ (α_N =13.2, α_N =14.8, α_H =14.8 and α_H =0.78).

Figures

Fig. S1 Photograph of as-prepared PAN/FeCl₃ hybrid nanofibers with weight ratio of 1:1

Fig. S2 SEM images of $PAN/FeCl_3$ nanofibers calcined at various temperature, (a) 700°C, (b) 900°C. (c) The average nanofiber diameter of different calcination temperature.

Fig. S3 SEM images of PAN/FeCl₃ nanofibers fabricated from various FeCl₃ content, (a) pristine PAN nanofiber, (b) 10 wt% and (c) 30 wt% FeCl₃. (d) The average nanofiber diameter of relevant nanofibers.

Fig. S4 TEM image of single fiber of Fe@CNF1100.

Fig. S5 X-ray diffraction (XRD) patterns of PAN/FeCl₃ calcined at 700 °C.

Fig. S6 XPS survey spectra of O 1s and N 1s of A-Fe@CNF1100.

Fig. S7 MeB adsorption rates through Fe@CNF700, Fe@CNF900 and Fe@CNF1100.

	<i>J</i> 1	1			
Samples	$\mathbf{S}_{\mathrm{BET}}^{a}$	S_{micro}^{b}	SF _{micro} ^c	V_{total}^{d}	V _{micro} ^e
	(m^2g^{-1})	(m^2g^{-1})	(%)	(m^3g^{-1})	(m^3g^{-1})
Fe@CNF700	85.76	16.31	19.01	0.122	0.007
Fe@CNF 900	353.43	230.48	65.21	0.356	0.103
Fe@CNF 1100	506.26	451.94	89.27	0.456	0.181
A- Fe@CNF1100	853.15	727.52	125.63	0.756	0.292

Table S1 The summary of pore structure parameters of Fe@CNFs.

^{*a*} Total surface area was calculated by the Brunauer-Emmett- Teller (BET) method. ^{*b*} Microporous surface area was calculated by the Bareet, Joyner and Halenda (BJH) method. ^{*c*} SF_{micro} indicates the surface area fraction of microporous. ^{*d*} the total pore volume was estimated was calculated at $P/P_0=0.99$. ^{*d*} Vmicro was calculated by the BJH method.

		5 0	
Samples	I _D	I _G	I_D/I_G
Fe@CNF700	2595.25	2320.14	1.12
Fe@CNF900	2601.45	2402.56	1.08
Fe@CNF1100	2588.86	2442.27	1.06
A-Fe@CNF1100	2481.60	2465.16	1.01

Table S2 The intensities of D band and G band and of I_D/I_G ratio of Fe@CNFs.

PMS activator	Pollutant	Concentration	Activator	Concentration	Т	Time	Conv.	Ref
		of pollutant	in	of PMS (g/L)	(°C)	(min)	(%)	
		(mg/L)	solution					
			(g/L)					
MnFe ₂ O ₄ -rGO	MB	20	0.05	0.5	25	40	~100	1
OMS-2	MB	20	0.25	0.25	-	15	~100	2
rGO900	MB	10	0.2	0.61	-	10	~100	3
CNT	Phenol	9.4	0.1	1.14	-	60	~92	4
α -MnO ₂	Phenol	25	0.4	2	25	30	~100	5
Fe ⁰ /Fe ₃ C@CS	Phenol	20	0.1	2	25	30	~100	6
A-	MB	10	0.1	0.5	25	15	~100	This
Fe@CNF1100								study
A-	Phenol	10	0.1	0.5	25	15	~100	This
Fe@CNF1100								study

Table S3 Comparison of the properties of A-Fe/CNF1100 with the literature results.

Reference

- 1. Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang and S. Wang, *Journal of Hazardous Materials*, 2014, 270, 61-70.
- 2. S. Luo, L. Duan, B. Sun, M. Wei, X. Li and A. Xu, *Applied Catalysis B: Environmental*, 2015, 164, 92-99.
- X. Duan, H. Sun, J. Kang, Y. Wang, S. Indrawirawan and S. Wang, ACS Catalysis, 2015, 5, 4629-4636.
- 4. H. Lee, H.-J. Lee, J. Jeong, J. Lee, N.-B. Park and C. Lee, *Chemical Engineering Journal*, 2015, **266**, 28-33.
- 5. E. Saputra, S. Muhammad, H. Sun, H. M. Ang, M. O. Tade and S. Wang, *Environmental Science & Technology*, 2013, **47**, 5882-5887.
- 6. Y. Wang, H. Sun, X. Duan, H. M. Ang, M. O. Tadé and S. Wang, *Applied Catalysis B:Environmental*, 2015, **172**, 73-81.