Supporting Information

One-pot synthesis of porous "carbon foam" derived from corn straws: atrazine

adsorption equilibrium and kinetics

Fan Yang, Lili Sun, Wei Zhang, Ying Zhang*

College of resource and environment, Northeast Agricultural University, 150030,

China

Contents:

- 1. Tables
- 2. Figures

1.Tables

Table S1. Textural properties of the as-prepared products calcined at 800 $^{\circ}$ C with different mass ratio of NaHCO₃ to corn straw.

Mass ration of NaHCO ₃ to	$S_{BET}(m^2 \ g^{\textbf{-}1})$	Total pore volume (cm ³ g ⁻¹)	V_{mic}/V_{total}
corn straw			
0*	11.2648	0.0358	0.064
1	1891.9	0.845	0.823
2	1210.7	0.844	0.510
6	1103.1	0.688	0.572

[*] 0 represented corn straw was calcined without NaHCO₃.

Table S2. Textural properties of the as-synthesized products* calcined at different temperature

Temperature (°C)	$S_{BET}(m^2 g^{-1})$	Total pore volume (cm ³ g ⁻¹)	V_{mic}/V_{total}
800	1891.9	0.845	0.823
900	1231.3	0.833	0.507
1000	1370	0.778	0.601

[*]Mass ratio of NaHCO₃ to corn straws is 1.

different ten	iperature.							
Temperature	Yield (%)	C (%)	H (%)	O (%)	N (%)	H/C	O/C	(O+N)/C
(°C)								
800	12.02	72.64	0.66	7.13	0.18	0.11	0.073	0.074
900	10.58	74.21	0.27	4.41	0.16	0.043	0.045	0.050
1000	8.39	75.65	0.35	2.12	0.21	0.055	0.021	0.023

Table S3. The yield and EA results of the as-synthesized products* calcined at different temperature.

[*]Mass ratio of NaHCO₃ to corn straws is 1.

Table S4. The yield and EA results of the as-synthesized products calcined at 800 $^{\circ}$ C with different mass ratio of NaHCO₃ to cellulose.

Mass ration of	Yield (%)	C (%)	H (%)	O (%)	N (%)	H/C	O/C	(O+N)/C
NaHCO ₃ to								
corn straw								
0*	13.66	70.30	0.32	3.32	0.36	0.055	0.035	0.040
1	12.02	72.64	0.66	7.13	0.18	0.11	0.073	0.074
2	9.21	74.24	0.38	3.83	0.28	0.061	0.039	0.059
6	7.56	74.80	0.56	5.47	0.20	0.090	0.055	0.069

[*] 0 represented corn straw was calcined without NaHCO₃.

Conc. (mg/L)	k (L/(g h))	m	$q_{e,exp} (mg/g)$	q _{e,cal} (mg/g)	OF
35	1.18	15.00	53.4	57.6	9.82
40	1.27	16.97	63.7	68.2	9.85
50	0.99	10.22	77.3	80.8	10.07
75	0.97	9.37	118.6	124.2	14.50
100	0.60	5.28	137.2	154.9	31.19

Table S5. Kinetic parameters of Modified Freundlich model for atrazine sorption on CSs at 25 °C.

Table S6. Kinetic parameters of Modified Freundlich model for atrazine sorption on PCFs at

25 °C.

Conc. (mg/L)	k (L/(g h))	m	q _{e,exp} (mg/g)	q _{e,cal} (mg/g)	OF
--------------	-------------	---	---------------------------	---------------------------	----

35	1.98	15.67	88.5	95.4	18.5
40	1.90	15.22	98.1	105.6	17.21
50	1.82	14.36	117.6	128.9	27.60
75	1.75	14.69	175.2	184.6	22.72
100	1.59	12.87	226.4	234.6	25.71

Table S7. Kinetic parameters of Modified Freundlich model for atrazine sorption on PCFs at

25	SC 1
55	U.

Conc. (mg/L)	k (L/(g h))	m	q _{e,exp} (mg/g)	q _{e,cal} (mg/g)	OF
35	2.08	17.94	93.3	96.2	11.13
40	1.98	16.70	100	106.9	15.49
50	1.89	14.76	122	132.7	27.37
75	1.97	17.69	183.7	196.1	30.13
100	1.72	13.96	236.5	246.3	21.46

Table S8. Kinetic parameters of Modified Freundlich model for atrazine sorption on PCFs at

45	r
-J	U .

Conc. (mg/L)	k (L/(g h))	m	q _{e,exp} (mg/g)	q _{e,cal} (mg/g)	OF
35	2.16	19.36	91.7	97.9	14.2
40	2.11	19.35	102.4	109.3	15.4
50	1.97	15.95	127.2	134.8	14.2
75	1.97	17.92	186.1	195.4	19.8

100	1.79		15.81	240.2	24	45.7	13.35		
Table S9. Intraparticle diffusion model of CSs at different initial concentrations.									
		k_1	C_1	OF	k_2	C ₂	OF		
	35	6.84	31.89	6.18	0.11	52.15	53.58		
Conc.(mg/L)	40	7.66	40.42	6.44	0.26	60.96	54.36		
	50	9.42	36.68	5.74	1.07	64.15	72.75		
	75	16.08	51.37	11.16	2.06	94.26	113.50		
	100	25.87	22.63	6.18	3.78	96.83	197.18		

 Table S10. Intraparticle diffusion model of PCFs at different initial concentrations.

		k_1	C_1	OF	k_2	C_2	OF
Conc.(mg/L)	35	15.71	50.04	12.82	0.48	83.70	2.57
	40	15.01	57.15	12.02	0.61	92.25	4.59
	50	23.62	61.24	13.52	0.30	114.85	3.36
	75	22.66	102.81	18.57	1.80	155.90	7.99
	100	34.81	116.91	13.06	3.30	188.68	6.44

Table S11. Isotherm parameters for atrazine sorption on CSs and P
--

CSs	PCFs		
298.15K	298.15K	308.15K	318.15K

Langmuir	q _{max}	150.11	306.37	340.74	345.72
	K _L	0.0287	0.148	0.183	0.266
	OF	31.46	76.40	83.12	101.65
Freundlich	$ m K_{f}$	14.65	76.39	88.90	102.14
	n	1.89	2.99	2.91	2.92
	OF	48.98	83.11	83.74	72.56

Table S12. Comparison of the performance of atrazine on the as-prepared PCFs with other representative materials.

Materials	Sources	Activating	$q_{\rm e}$ (mg/L)	Ref.
		agent		
Biochar	Corn straw	NH ₄ H ₂ PO ₄	53.85	1
Activated carbon	Sludge	None	45.49	2
O-MWNTs	CH ₄ /H ₂	H_2SO_4	17.35	3
Biochar	Sludge	/	16.8	4
Biochar	Wheat straw	/	12.0	5
Biochar	Corn straw	NaHCO ₃	97.9	This work

References

1. Zhao, X.; Ouyang, W.; Hao, F.; Lin, C.; Wang, F.; Han, S.; Geng, X., Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine. Bioresource Technology 2013, 147, 338-344.

2. Lladó, J.; Lao-Luque, C.; Ruiz, B.; Fuente, E.; Solé-Sardans, M.; Dorado, A. D.,

Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics. Process Safety and Environmental Protection 2015, 95, 51-59.

3. Chen, G.-C.; Shan, X.-Q.; Zhou, Y.-Q.; Shen, X.-e.; Huang, H.-L.; Khan, S. U., Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials 2009, 169 (1–3), 912-918.

4. Zhang, W.; Zheng, J.; Zheng, P.; Qiu, R., Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions. Chemosphere 2015, 134, 438-445.

5. Wang, P.; Yin, Y.; Guo, Y.; Wang, C., Preponderant adsorption for chlorpyrifos over atrazine by wheat straw-derived biochar: experimental and theoretical studies. RSC Advances 2016, 6 (13), 10615-10624.

Figures

Figure S1. The SEM and TEM images of PCFs prepared with different temperature of 900 $^{\circ}$ C (A) ,1000 $^{\circ}$ C (B) and different mass ratio (precursor/NaHCO₃) of 1:2 (C), 1:6

(D).

Figure S2. The TEM images of CSs prepared via the direct pyrolysis of corn straws.

Figure S3. N_2 isotherms of PCFs and CSs prepared at different conditions. (Insert is

Figure S4. (A) XRD results and (B) Raman spectras using 532 nm excitation of PCFs

with different temperature and CSs; (C) XRD results and (D) Raman spectras using 532 nm excitation of simples calcined at 800 °C with different mass ratio of NaHCO₃ to corn straws.

Figure S5. XRD spectrum of PCFs before washing with HCl solutions.

Figure S6. TG results for the mixture of cellulose and NaHCO₃ (1:1). The TG was measured at 5 °C min⁻¹ under the atmosphere of N_2 .

Figure S7. Sorption isotherms of atrazine on CSs and PCFs prepared at different mass ratio of precursor/NaHCO₃ with the temperature of 800 °C.

Figure S8. Sorption isotherms of atrazine on CSs and PCFs prepared at different temperature with the precursor/NaHCO₃ of 1:1 in mass ratio.

Figure S9. Intraparticle diffusion model of CSs (A) and PCFs samples (B) at the

temperature of 25 °C.