Electronic Supplementary Information (ESI) for Environmental Science: Nano

Enhanced adsorption of aromatic chemicals to boron and nitrogen co-doped singlewalled carbon nanotubes

Lilin Wang,^{ab} Dongqiang Zhu,^c Jingwen Chen,^d Yongsheng Chen,^e and Wei Chen^{b*}

^a Sichuan Key Laboratory of Agricultural Environmental Engineering, College of

Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China

^b College of Environmental Science and Engineering, Nankai University, Tianjin 300350,

China

^c School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
^d Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of
Environmental Science and Technology, Dalian University of Technology, Dalian 116024,
China

^e Key Laboratory of Functional Polymer Materials and Center for Nanoscale Science and Technology, College of Chemistry, Nankai University, Tianjin 300071, China.

> Number of pages: 9 Number of tables: 2 Number of figures: 3

Dubinin–Astakhov (DA) model and multiple liner regression analysis between the characteristic energy of adsorption (E) and solvatochromic parameters of organic compounds

To further understand the effects of B and N co-doping on the electron donor–acceptor interactions, in particular, how the enhanced surface polarization can affect adsorption energy, the adsorption data were analyzed using the approach developed by Yang et al.^{S1, S2} Specifically, multiple linear relationship of the Dubinin–Astakhov (DA) model characteristic energy of adsorption and the solvatochromic parameters of the aromatics (i.e., the hydrogen bonding donor parameter α_m and the π -electron polarizability parameter π^*) were obtained, to understand the relative significance of specific/polar interactions of BN-SWCNT, as compared with the undoped SWCNT.

The DA model is expressed as:

$$\log q_e = \log Q^0 - (\varepsilon/E)^{\ell}$$

where q_e (mg/g) is the adsorbed amount of organic compound in equilibrium; Q⁰ (mg/g) is the adsorption capacity of organic compound; ε (kJ/mol), ε = RTln(C_s/C_e), is the effective adsorption potential; C_e (mg/L) is the equilibrium concentration of organic compound in aqueous phase; C_s (mg/L) is the water solubility of organic compound; R (8.314×10⁻³ kJ/(mol·K)) is the universal gas constant; T (K) is the absolute temperature; E (kJ/mol) is the "correlating divisor" of the effective adsorption potential ε , and can be understood as the characteristic energy of adsorption; and b is a fitting parameter. The fitting results were list in **Table S2**.

Multiple linear regressions were conducted by SigmaPlot 10.0 to establish the linear solvation energy relationships (LSERs) combining the DA model fitted adsorption affinity parameter, *E*, with the solvatochromic parameters, π^* (the π -

electron polarizability parameter) and α_m (the hydrogen bonding donor parameter), of the investigated organic compounds for SWCNT and BN-SWCNT, respectively.

Reasonable good linear relationship between *E* and the solvatochromic parameters α_m and π^* of the organic compounds (except 1-naphthylamine) was observed for both SWCNT and BN-SWCNT:

SWCNT:

$$E = 24.93 (\pm 3.25) \times \alpha_{\rm m} + 9.96 (\pm 3.41) \times \pi^* + 4.91 (\pm 3.35)$$

 $R^2 = 0.968$

BN-SWCNT:

$$E = 44.20 (\pm 4.46) \times \alpha_{\rm m} + 16.67 (\pm 4.67) \times \pi^* + 9.80 (\pm 4.59)$$
$$R^2 = 0.978$$

The fitted π^* coefficient for BN-SWCNT (16.67) is significant greater than that for SWCNT (9.96), indicating that doping with B and N can significantly enhance the π – π EDA interactions.

	CNT ^b		Activated carbons		
	SWCNT	BN-SWCNT	Modeled ^c	Experimental	
benzene	3.60	4.14	4.32	4.46 (2.30E-02) ^{S4} 4.13 (7.30E-02) ^{S5}	
benzonitrile	3.90	4.34	3.72	data not found	
nitrobenzene	4.08	4.70	4.20	2.78 (8.13E-01) ^{S6} 3.95 (2.44E-01) ^{S7} 3.81 (2.00E-01) ^{S8}	
1,3-dinitrobenzene	4.44	4.71	4.05	data not found	
2-naphthol	4.94	5.10	5.75	4.99 (1.00E-02) ^{S9}	
1-naphthylamine	5.43	5.40	4.33	data not found	

Table S1 Summary of Log K_d values of the adsorbates on carbon nanotubes and on activated carbons.^a

^a K_d (L/kg) represents solid–water distribution coefficient of an adsorbate. Data in parentheses are the corresponding equilibrium aqueous concentrations (C_w , mmol/L).

^b Experimental data of this study (corresponding to a $C_{\rm w}$ of 0.01 mmol/L).

^c Calculated using the linear solvation energy relationships developed by Blum et al.^{S3}

Table S2 Results of DA model fits to adsorption data of six model adsorbates onSWCNT and BN-SWCNT.

Adsorbate	CNT	Q^0 (mg/g)	E	b	R^2
	CIVI		(kJ/mol)		
benzene	SWCNT	186.2	11.98	1.243	0.984
	BN-SWCNT	107.9	22.34	1.771	0.997
benzonitrile	SWCNT	302.0	12.04	0.992	0.986
	BN-SWCNT	152.1	25.21	1.672	0.999
nitrobenzene	SWCNT	283.8	14.60	1.142	0.994
	BN-SWCNT	213.3	27.12	1.060	0.960
1,3-dinitrobenzene	SWCNT	224.9	18.89	1.458	0.991
	BN-SWCNT	305.5	29.59	0.977	0.999
2-naphthol	SWCNT	415.0	28.29	1.066	0.996
	BN-SWCNT	384.6	50.43	1.057	0.992
1-naphthylamine	SWCNT	653.1	64.60	1.119	0.995
	BN-SWCNT	781.6	56.66	1.006	0.991

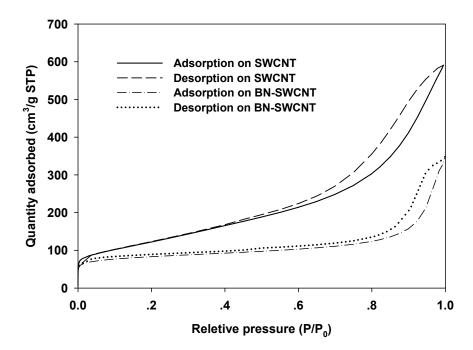
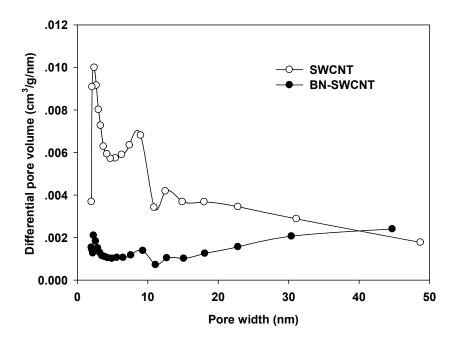



Fig. S1 N_2 adsorption and desorption isotherms to SWCNT and BN-SWCNT.

Fig. S2 Pore size distributions of SWCNT and BN-SWCNT, plotted as differential pore volume versus pore width.

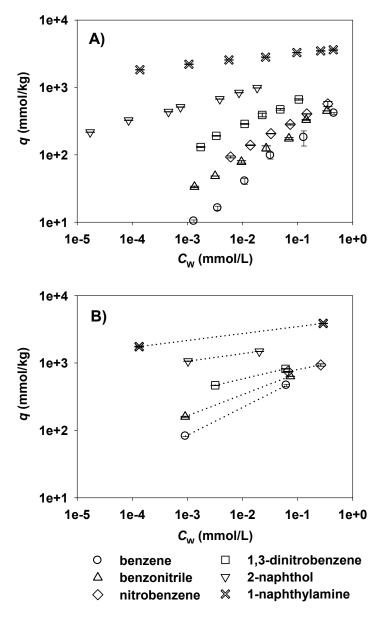


Fig. S3 Adsorption data of six model aromatics to: A) SWCNT; and B) BN-SWCNT.

References

- S1. W. Wu, W. Chen, D. Lin and K. Yang, *Environ. Sci. Technol.*, 2012, 46, 5446-5454.
- K. Yang, W. Wu, Q. Jing and L. Zhu, *Environ. Sci. Technol.*, 2008, 42, 7931-7936.
- S3. D. J. W. Blum, I. H. Suffet and J. P. Duguet, *Crit. Rev. Env. Sci. Tec.*, 1993, 23, 121-136.
- S4. I. Pikaar, A. A. Koelmans and P. C. M. van Noort, *Chemosphere*, 2006, **65**, 2343-2351.
- N. Wibowo, L. Setyadhi, D. Wibowo, J. Setiawan and S. Ismadji, J. Hazard. Mater., 2007, 146, 237-242.
- S6. S. Liu and R. Wang, J. Porous Mat., 2010, 18, 99-106.
- S7. P. Aggarwal, J. C. Kapoor, S. K. Kapoor, A. K. Bhalla and R. C. Bansal, *Indian J. Chem. Techn.*, 1996, **3**, 187-190.
- Y. Kato, M. Machida and H. Tatsumoto, *J.Colloid Interf. Sci.*, 2008, **322**, 394-398.
- S9. S. Nouri, R. M. D. Abad and M. Bahram, J. Iran. Chem. Soc., 2012, 9, 397-405.