Supplementary Information

Optimization of Porous Structure of Superparamagnetic Nanoparticle Adsorbents for Higher and Faster Removal of Emerging Organic Contaminants and PAHs

Yuxiong Huang[†], Aaron A. Fulton[‡], and Arturo A. Keller^{*†}

[†]Bren School of Environmental Science and Management, University of California at Santa

Barbara, CA, USA 93106

[‡] Department of Molecular, Cellular, and Developmental Biology, University of California, Santa

Barbara, CA, USA 93106

*Corresponding author. Tel: +1 805 893 7548; fax: +1 805 893 7612. Email address:

keller@bren.ucsb.edu

1. Analysis

Removal efficiency and sorption capacity of EOCs or PAHs was calculated as:

Removal efficiency =
$$\frac{C_0 - C_t}{C_0} \times 100\%$$
 (1)

Sorption capacity =
$$q_e = \frac{(C_0 - C_i) \cdot V}{m}$$
 (2)

where C_0 and C_t are the initial and final concentrations of EOCs (mg/L), m is the mass of Mag-PCMAs (g), and V is the volume of solution (L).

2. Properties of selected EOCs and PAHs

Table S1. Properties of selected EOCs and PAHs for Sorption Studies^{1,2}

	Compound name	Molecular mass	Octanol-water partition coefficient	Initial
		(g/mol)	logK _{ow}	Solution pH
EOCs	Methyl Orange	327.33	0.68	5.30
	Sulfamethoxazole	253.28	0.89	4.21
	Gemfibrozil	250.33	4.77	3.99
PAHs	Acenaphthene	154.21	3.92	4.97
	Phenanthrene	178.23	4.52	3.98

3. Mag-PCMAs characterization

Figure S1. Thermogravimetric analysis (TGA) of Mag-PCMAs-0, Mag-PCMAs-30, and Mag-PCMAs-60

Figure S2. The magnetic hysteresis loops of Mag-PCMAs-0, Mag-PCMAs-30, and Mag-PCMAs-60.

4. Langmuir isotherm model

Langmuir EOCs and PAHs Mag-PCMAs R² $q_m (mg/g)$ K_L (L/mg) Mag-PCMAs-0 87.4 0.72 0.996 Mag-PCMAs-30 94.0 0.76 0.996 Sulfamethoxazole Mag-PCMAs-60 113 0.75 0.996 Mag-PCMAs-0 66.8 -0.02 0.929 Mag-PCMAs-30 276 1.14 0.957 Gemfibrozil Mag-PCMAs-60 465 0.04 0.981 Mag-PCMAs-0 177. 3.36 0.998 Methyl Orange Mag-PCMAs-30 185 -0.72 0.995 Mag-PCMAs-60 444 0.21 0.908 Mag-PCMAs-0 -16.4 0.972 0.48 Mag-PCMAs-30 0.56 -16.8 0.962 Acenaphthene Mag-PCMAs-60 1.46 -13.1 0.961 Mag-PCMAs-0 -20.1 0.967 0.36 Phenanthrene Mag-PCMAs-30 0.57 -14.5 0.922 Mag-PCMAs-60 1.23 -32.0 0.920

Table S2. Langmuir isotherm model parameters for EOCs and PAHs sorption on Mag-PCMAs

Figure S3. Adsorption of EOCs and PAHs (sulfamethoxazole, gemfibrozil, methyl orange, acenaphthene and phenanthrene) onto Mag-PCMA in solution with Langmuir adsorption isotherms fit, symbols represent experimental data, and red line represents model prediction.

References:

- 1. Huang, Y. X.; Keller, A. A. Magnetic Nanoparticle Adsorbents for Emerging Organic Contaminants. *Acs Sustain Chem Eng* 2013, 1, 731-736.
- 2. Watts, R. J. Hazardous wastes: sources, pathways, receptors. 1998.