Electronic Supplemental Information

Triclosan adsorption using wastewater biosolids-derived biochar

Yiran Tong^a, Brooke K. Mayer^a, Patrick J. McNamara^a*

^a Department of Civil, Construction and Environmental Engineering, 1637 West Wisconsin Avenue, Marquette University, Milwaukee, WI, USA

*Corresponding author e-mail: patrick.mcnamara@mu.edu phone: (414) 288-2188

		Pages
S1.	Triclosan structure and physical-chemical properties	S2
S2.	Kinetics curve	S3
S3.	LC-MS	S4
S4.	FT-IR spectra of HCl, NaOH, and Milli-Q water treated biochar	S5
S5.	Biochar surface zeta potential and point of zero charge	S 6
S6.	Isotherm model fitting	S7
S7.	Treated wastewater effluent qualities	S 8
S8.	References	S9

S1. Triclosan structure and physical-chemical properties

The triclosan molecule, shown in Figure S1, is a trichlorinated binuclear aromatic that is classified as a pesticide and antimicrobial drug¹. Triclosan has a pKa value of 7.9. The log K_{ow} value of 4.76 suggests that the compound is hydrophobic. The vapor pressure of 4.65E-06 mm Hg indicates it is characterized by low volatility.

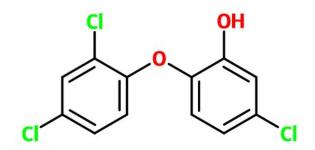
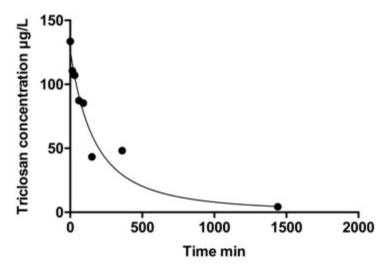
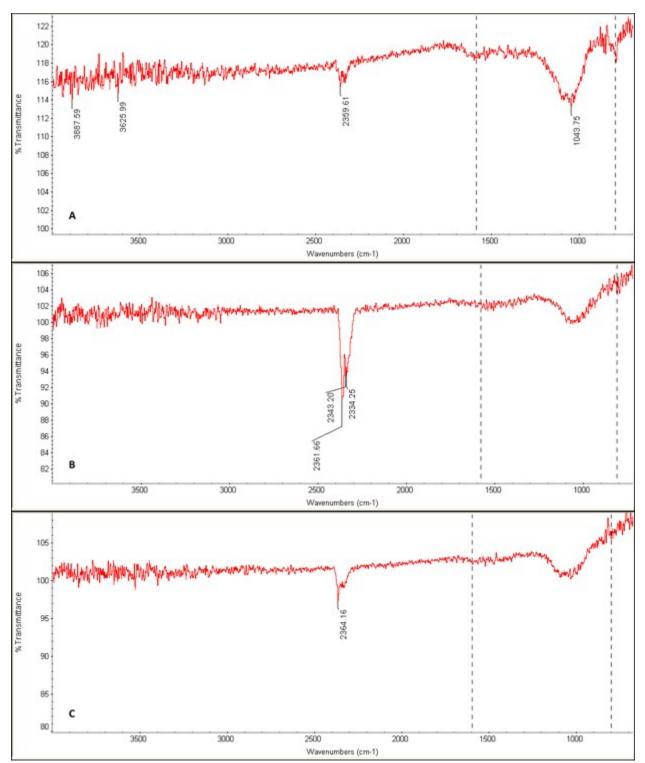


Figure S1- Triclosan chemical structure

S2. Kinetics studies

To determine the adsorption equilibrium, 600°C HCl-biochar was added at a concentration of 0.4 g/L to deionized water spiked with triclosan at an initial concentration of approximately 130 μ g/L. Samples were taken over time and were quantified using the LC-MS. The results are shown in Figure S2. The equilibrium time was determined as 24 hours.

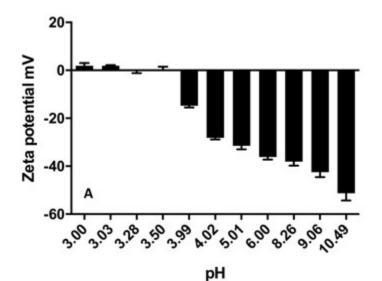


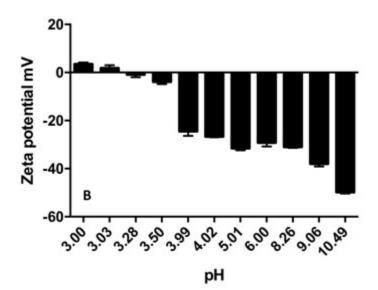

Figure S2- Triclosan adsorption kinetics curve

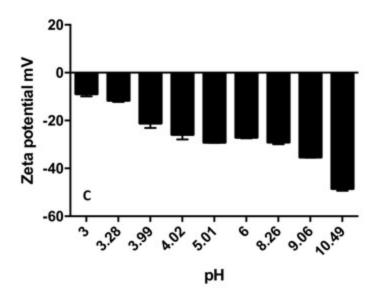
S3. LC-MS operation

Filtered water samples were mixed with methanol (50/50) in 2 mL amber vials. A binary gradient of Milli-Q water and 100% HPLC-grade methanol was used as the eluent. The method described by Ross et al. (2016) was modified and applied. The gradient began at 80% methanol, raised to 100% methanol at 8 minutes, ramped down to 80% methanol from 8 to 9 minutes and remained at 80% methanol to 13 minutes to allow column re-equilibration. The eluent flow rate was 0.4 mL/min. Sample injections of 20 μ L were passed through a Phenomenex[®] (Torrance, CA, USA) Luna 3u C18 reverse-phase column (150×3 mm, 100Å pore size). Triclosan was detected in mass-spectrometry with negative electrospray ionization (ESI⁻), at a mass-to-charge (*m/z*) ratio of 287.

S4. FT-IR spectra of HCl, NaOH, and Milli-Q water treated biochar


Biochar, pyrolyzed at 600°C and pretreated with HCl, NaOH or Milli-Q water, was ground to fine powder (<10 μ m). The scanning of each sample was 32. Variability observed in the spectra may be due to the amorphous nature of biosolids-derived biochar.




Figure S3- FT-IR spectra of biochar produced at 600°C, treated with A) HCl, B) NaOH, and C) Milli-Q water.

S5. Biochar zeta potential

Biochar, pyrolyzed at 600°C and pretreated with HCl, NaOH or Milli-Q water, was ground to fine powder (<10 μ m). Approximately 0.01 g of biochar powder was suspended in 40 mL of Milli-Q water. The solution pH was then adjusted with HCl or NaOH. The zeta potential was immediately measured using a Malvern Zetasizer Nano ZS (Malvern Instruments Ltd, MA, USA). Results are shown in Figure S4.

Figure S4- Zeta potentials of biochar produced at 600°C, pretreated with A) HCl, B) NaOH, and C) Milli-Q water.

S6. Isotherm model fitting

Isotherm	Equation	Parameter			Sorbent			
model			300°C	500°C	600°C	700°C	800°C	Activated carbon
Linear	$Q_e = AC_e + B$	А	0.345	3.09	2.40	4.82	8.29	30.0
		В	120	190	237	153	332	1440
		\mathbb{R}^2	0.049	0.936	0.757	0.917	0.859	0.877
Langmuir	$Q_e = \frac{Q_{max}K_aC_e}{1 + K_aC_e}$	Q _{max}	5.07 × 10 ³	9.02 × 10 ⁴	5.70 × 10 4	1.44×10^{4}	4.42×10^{3}	$1.50 \times 10_{5}$
		Ka	0.0389	0.0113	0.0151	0.0405	0.204	0.0345
		\mathbb{R}^2	0.070	0.867	0.896	0.76	0.977	0.967
Freundlich	$Q_e = K_F C_e^{1/n}$	$K_{\rm F}$	56.5	43.2	62.0	62.9	254	554
		1/n	0.22	0.54	0.45	0.46	0.30	0.44
		\mathbb{R}^2	0.0593	0.912	0.835	0.85	0.977	0.928

Table S1-Isotherms of HCl-biochar produced at multiple temperatures and activated carbon fitted with Linear, Langmuir and Freundlich models.

S7. Treated wastewater effluent qualities

рН	COD (mg/L)	TOC (mg/L)	Turbidity (NTU)	TSS (mg/L)
7.2	BD*	70.0	2.1	4.6

Table S2-Treated municipal wastewater effluent qualities

*: BD: below detection. Detection limit: 125 mg/L

S8. References

- 1 R. U. Halden and D. H. Paull, *Environ. Sci. Technol.*, 2005, **39**, 1420–1426.
- 2 J. J. Ross, D. H. Zitomer, T. R. Miller, C. A. Weirich and P. J. McNamara, *Environ. Sci. Water Res. Technol.*, 2016.