Supporting Information for "Femtosecond Charge and Molecular Dynamics of I-containing organic molecules Induced by Intense X-Ray Free-Electron Laser Pulses"

Authors

K. Nagaya^{1,2}, K. Motomura³, E. Kukk^{3,4}, Y. Takahashi⁵, K. Yamazaki^{5,6}, S. Ohmura^{1,7}, H. Fukuzawa^{2,3}, S. Wada^{2,8},

S. Mondal³, T. Tachibana³, Y. Ito³, R. Koga⁸, T. Sakai¹, K. Matsunami¹, K. Nakamura⁵, M. Kanno⁵, A. Rudenko⁹,

C. Nicolas¹⁰, X.-J. Liu^{10,11}, C. Miron^{10,17}, Y. Zhang¹², Y. Jiang¹², J. Chen¹³, M. Anand^{14,15}, D. E. Kim^{14,15}, K. Tono¹⁶,

M. Yabashi^{2,16}, M. Yao¹, H. Kono⁵ and K. Ueda*^{2,3}

¹ Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

² RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan

³ Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

⁴ Department of Physics and Astronomy, University of Turku, FI-20014, Finland

⁵ Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

⁶Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

⁷ Research Center for Condensed Matter Physics, Hiroshima Institute of Technology, Hiroshima 731-5193, Japan

⁸ Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

⁹ J.R. Macdonald Laboratory, Department of Physics, Kansas State University, 66506 Manhattan, KS, USA

¹⁰ Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex, France

¹¹ School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China

¹² Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China

¹³ Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, China

¹⁴ Department of Physics, Center for Attosecond Science and Technology, Pohang University of Science and Technology, Pohang, 37673, South Korea

¹⁵ Max Planck Center for Attosecond Science, Max Planck POSTECH/KOREA Res. Init., Pohang, 37673, South Korea

¹⁶ Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan

¹⁷ Extreme Light Infrastructure - Nuclear Physics (ELI-NP), "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov, Romania

Online supporting information

Our CCE-CE simulation succeeded to reproduce the experimental observations of coincidence measurements when we adopted the parameter set of T = 300 K, $\tau = 10$ fs and R = 0.5 fs⁻¹. Figures S1 – S4 displays the comparison between the experimental data and CCE-CE model sumulations for I^{q+} coincience data with q=1-4. In each figure, (a)-(e), (f)-(i) and (k)-(n) show the kinetic energy distribution (KED) of fragment ions detected in coincidence with I^{q+}, SP₂(I^{q+},X) and SP₃(I^{q+},H⁺, X), respectively, where X represents H⁺, O⁺, N⁺ and C⁺. Black lines and red lines correspond to the experimental data and results of CCE-CE simulations. (o) represents the definition of ϕ for SP₃(I^{q+},H⁺, X).

In the present SCC-DFTB approach, two types of energy injection to atoms $\{i\}$ were examined. One is the case where the vertical components of additional momenta Δp_{i}^{f} to the molecular plane, $\Delta p_{i\perp}^{f}$, are all set to be zero and the other is the case where nonzero momenta are allowed for $\Delta p_{i\perp}^{f}$. To compare the $\Delta p_{i\perp}^{f} = 0$ and $\Delta p_{i\perp}^{f} \neq 0$ cases, we plotted their KED in Fig. S5 and SP₂(I^{*q*+}, X) in Fig. S6.

Figure S7 shows the spatial distribution of one-electron wave functions for HOMO, HOMO-n (n=1-4) of 5-IU in the ground state, where the atomic position is that we adopted for NAQMD calculations at t=0 fs. Red and green colors represent the isosurfaces of the wave functions with the values of -0.03 and 0.03 atomic units, respectively. It is seen that wave functions of HOMO, HOMO-1 and HOMO-4 are mainly distributed on iodine.

Fig. S1. Comparison between the experiment (black line) and CCE-CE model sumulations (red lines) for I⁺ coincience data. (a)-(e) : Kinetic energy distribution of fragment ions. (f)-(i): $SP_2(I^+,X)$ for X=H⁺, O⁺, N⁺ and C⁺. (j): Schematics of molecular structure. (k)-(n): $SP_3(I^+,H^+, X)$ for X=H⁺, O⁺, N⁺ and C⁺. (o) Definition of ϕ .

Fig S2. Comparison between the experiment (black line) and CCE-CE model sumulations (red lines) for I^{2+} coincience data. (a)-(e) : Kinetic energy distribution of fragment ions. (f)-(i): SP₂(I²⁺,X) for X=H⁺, O⁺, N⁺ and C⁺. (j): Schematics of molecular structure. (k)-(n): SP₃(I²⁺,H⁺, X) for X=H⁺, O⁺, N⁺ and C⁺. (o) Definition of ϕ .

Fig. S3. Comparison between the experiment (black line) and CCE-CE model sumulations (red lines) for I^{3+} coincience data. (a)-(e) : Kinetic energy distribution of fragment ions. (f)-(i): SP₂(I^{3+} ,X) for X=H⁺, O⁺, N⁺ and C⁺. (j): Schematics of molecular structure. (k)-(n): SP₃(I^{3+} ,H⁺, X) for X=H⁺, O⁺, N⁺ and C⁺. (o) Definition of ϕ .

Fig. S4. Comparison between the experiment (black line) and CCE-CE model sumulations (red lines) for I^{4+} coincience data. (a)-(e) : Kinetic energy distribution of fragment ions. (f)-(i): SP₂(I⁴⁺,X) for X=H⁺, O⁺, N⁺ and C⁺. (j): Schematics of molecular structure. (k)-(n): SP₃(I⁴⁺,H⁺, X) for X=H⁺, O⁺, N⁺ and C⁺. (o) Definition of ϕ .

Fig. S5 SCC-DFTB results for the kinetic energy distribution (KED) of fragment ions emitted from 5-iodouracil: (a) H⁺, (b) O^{q+}, (c) N^{q+}, (d) C^{q+} and (e) I^{q+}. The blue solid and red broken lines denote the SCC-DFTB results for $\Delta p_{i\perp}^{r} = 0$ and $\Delta p_{i\perp}^{r} \neq 0$, respectively. The other parameters used are the same as in the SCC-DFTB results of Figs. 5 and 6: T = 300 K, $\tau = 10$ fs, $\varepsilon = 6$ eV and $T_e = 6$ eV. (f) The definition of the equilibrium angle between two atoms (the I atom and its nearest O atom) in the neutral 5-IU molecule.

Fig. S6. Distribution of the normalized scalar product of momentum vectors, SP₂(A,B), as a function of $\cos(\theta) = \vec{P}_A \cdot \vec{P}_B / |\vec{P}_A| |\vec{P}_B|$ for fragment ion pairs (a) I^{q+} -H⁺, (b) I^{q+} -O⁺, (c) I^{q+} -N⁺, and (d) I^{q+} -C⁺. Gray shaded areas indicate the equilibrium angles between two atoms A and B as defined in Fig. S5 (f). The blue and red broken lines denote the SCC-DFTB results for $\Delta \vec{P}_{i\perp} = 0$ and $\Delta \vec{P}_{i\perp} \neq 0$, respectively. The other parameters used for the SCC-DFTB simulation are the same as in Fig.S5: T = 300 K, $\tau = 10$ fs, $\varepsilon = 6$ eV and $T_e = 6$ eV.

Fig. S7. Spatial distribution of electronic wave functions at t=0 fs, for HOMO, HOMO-n (n=1-4) of 5-IU, where the isosurfaces at the values of -0.03 e/a_0^3 and 0.03 e/a_0^3 are represented by red and green colors, respectively.