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1 Comparison to metadynamics results

Since we are introducing a new methodology to calculate free energy surfaces of nucle-

ation phenomena, we compare the results of the approach described in this work to a

well-established technique, namely well-tempered metadynamics (WTmetaD)1. The com-

parison was made on a system of 864 atoms under the same thermodynamic conditions

described in the main manuscript. As before, we measure all quantities in Lennard-Jones

units2, such that the Lennard-Jones well depth ε is the unit of energy and the Lennard-

Jones diameter σLJ is the unit of length. The details of the WTmetaD calculation are as

follows. We employed the number of liquid-like atoms nl as CV (see main manuscript).

The bias deposition stride was set to be 500 MD steps, the height of the kernels (gaussians)

was set to 0.5 ε (∼ 0.67 kBT), and the width of the kernels was set to 1. A bias factor of

6 was employed, leading to barriers of ∼ 2 kBT. We employed 4 multiple walkers in the

calculation. In order to limit the sampling of CV space we introduced a static harmonic

barrier:

V (s) =


0 if s < s0

1
2
κ(s− s0)2 if s > s0

, (S1)
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Figure S1: Reweighted free energy obtained fromWTmetaD and the reweighted free energy
obtained from the approach described in this work (VES).

with s0 = 150 and κ = 0.02. The total simulation time per multiple walker was 5 · 108 MD

steps. To obtain the free energy surface as a function of nl we could have exploited the

fact that the WTmetaD potential converges asymptotically to3:

V (s, t) = −
(

1− 1

γ

)
F (s) + c(t) (S2)

where s is the biased CV. Instead, we employed a reweighting procedure4 to obtain F (nl).

This allows obtaining features of the free energy that WTmetaD kernels can not describe.

In Figure S1 we show a comparison of the reweighted free energy obtained from WT-

metaD and the reweighted free energy obtained from the approach described in this work

(VES). The two free energies agree within the statistical error. This provides a proof of

the correctness of the approach described in the main manuscript.
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2 Reweighting

In a simulation in the isothermal-isobaric ensemble, such as the ones carried out in this

work, the statistical average of an observable O(R) is:

〈O(R)〉NPT =

∫
dRO(R) e−β[U(R)+PV ]

ZNPT
(S3)

where ZNPT is the appropriate partition function. When a bias potential V (s) is intro-

duced, the statistical weight of each con�guration (R, V ) is altered and this must be taken

into account in the calculation of ensemble averages. Henceforth, we shall drop the sub-

script NPT to refer to the unbiased ensemble. In this way the equations will hold also if

the simulations were performed in a di�erent ensemble, e.g. the canonical ensemble. If the

bias potential is static (time-independent), an average in the unbiased ensembled 〈·〉 can

be calculated from samples in the biased ensemble 〈·〉V using5:

〈O(R)〉 =
〈O(R) eβV (s(R))〉V
〈eβV (s(R))〉V

. (S4)

Given a simulation in which one has collected samples of the observable O1, ..., ON and the

corresponding bias potential V1, .., VN , the unbiased average of O(R) is:

〈O(R)〉 =

N∑
i=1

Oi eβVi

N∑
i=1

eβVi
. (S5)

In the variational approach, once Ω[V ] has been minimized the bias potential becomes

time-independent and thus equation (S4) can be used rigorously to calculate ensemble av-

erages in the unbiased ensemble.
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This formalism can be applied to the construction of a normalized histogram N(s, t) of

a collective coordinate s. The asymptotic value of N(s, t) can be written as an ensemble

average,

lim
t→∞

N(s, t) = P (s) = 〈δ[s− s(R)]〉, (S6)

with P (s) the probability to observe a given value of the CV s. Therefore equation (S4)

can be directly employed to calculate N(s, t) in an biased simulation. In practice, instead

of using δ[s−s(R)] one takes window functionsW (s, si, w) of width w centered at k points

si = s1, ..., sk, with si − si−1 = w. The normalized histogram can then be converted into a

free energy employing the formula3:

F (s) = − 1

β
lim
t→∞

logN(s, t). (S7)

This is the procedure we have employed in this work to obtain the reweighted free energies

as a function of nl.

The cluster size distribution is intuitively de�ned as the average number of clusters of

each size n. On more formal grounds, if Nn(R) is the number of clusters of size n for a

given con�guration R, then the cluster size distribution can be rigurously de�ned as 〈Nn〉.

Once that the cluster size distribution has been expressed as an ensemble average, it is

possible to employ equation (S4) to calculate it from a biased simulation. We shall denote

by Nn(t) the estimation at time t of 〈Nn〉, and if the sampling is ergodic 〈Nn〉 = lim
t→∞

Nn(t)

holds. Then, a free energy F (n) can be associated to the cluster size distribution using:

F (n) = − 1

β
lim
t→∞

logNn(t). (S8)

We point out that the cluster size distribution depends on the speci�c ensemble that is
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used for the calculation6. In this work, the introduction of the barrier at s0 leads to the

constrained equilibrium ensemble envisioned in the classical theory of nucleation6.

3 Collective variable

As described in the main manuscript, the bias potential V (s) was constructed as a function

of the total number of liquid-like atoms (nl). In this section we provide details for the

calculation of this CV.

We de�ne nl as the number of atoms that have a coordination number larger than c0

within a radius r0. In order to use nl to construct the bias potential one needs to de�ne it in

a continuous and di�erentiable fashion. The calculation of nl can be thought of as divided

in two stages. The �rst in which the coordination number of each atom is calculated as,

ci =
∑

j ∈ neigh

1−
(
rij
r0

)12
1−

(
rij
r0

)24 , (S9)

where i is the atom index, j runs over all neighbors of atom i, and rij is the distance

between atoms i and j. In a second stage the number of atoms having a coordination

number larger than c0 is evaluated with:

nl =
∑

i ∈ atoms

1−
(
ci
c0

)−12
1−

(
ci
c0

)−24 . (S10)

For all the simulations we have employed r0 = 1.5 and c0 = 4.5.
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