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1 Comparison to metadynamics results

Since we are introducing a new methodology to calculate free energy surfaces of nucle-
ation phenomena, we compare the results of the approach described in this work to a
well-established technique, namely well-tempered metadynamics (WTmetaD)'. The com-
parison was made on a system of 864 atoms under the same thermodynamic conditions
described in the main manuscript. As before, we measure all quantities in Lennard-Jones
units2, such that the Lennard-Jones well depth € is the unit of energy and the Lennard-
Jones diameter o ; is the unit of length. The details of the WTmetaD calculation are as
follows. We employed the number of liquid-like atoms n; as CV (see main manuscript).
The bias deposition stride was set to be 500 MD steps, the height of the kernels (gaussians)
was set to 0.5 € (~ 0.67 kgT), and the width of the kernels was set to 1. A bias factor of
6 was employed, leading to barriers of ~ 2 kgT. We employed 4 multiple walkers in the
calculation. In order to limit the sampling of CV space we introduced a static harmonic

barrier:

0 if s < 59
V(s) = 7 (S1)
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Figure S1: Reweighted free energy obtained from WTmetaD and the reweighted free energy
obtained from the approach described in this work (VES).

with so = 150 and x = 0.02. The total simulation time per multiple walker was 5-10% MD
steps. To obtain the free energy surface as a function of n; we could have exploited the

fact that the WTmetaD potential converges asymptotically to?:

Vis,t) = — (1 - %) F(s) + e(t) ($2)

where s is the biased CV. Instead, we employed a reweighting procedure? to obtain F'(n;).
This allows obtaining features of the free energy that WT'metaD kernels can not describe.

In Figure S1 we show a comparison of the reweighted free energy obtained from WT-
metaD and the reweighted free energy obtained from the approach described in this work
(VES). The two free energies agree within the statistical error. This provides a proof of

the correctness of the approach described in the main manuscript.



2 Reweighting

In a simulation in the isothermal-isobaric ensemble, such as the ones carried out in this

work, the statistical average of an observable O(R) is:

dR O(R) e PlUR)+PV]

(OR))vpr = (S3)

ZNPT

where Zypr is the appropriate partition function. When a bias potential V(s) is intro-
duced, the statistical weight of each configuration (R, V) is altered and this must be taken
into account in the calculation of ensemble averages. Henceforth, we shall drop the sub-
script NPT to refer to the unbiased ensemble. In this way the equations will hold also if
the simulations were performed in a different ensemble, e.g. the canonical ensemble. If the
bias potential is static (time-independent), an average in the unbiased ensembled (-) can
be calculated from samples in the biased ensemble () using®:

(O(R) VERD)y

(OR)) = (eBV(s(R))y,

(54)

Given a simulation in which one has collected samples of the observable Oy, ..., Oy and the

corresponding bias potential V1, .., Viy, the unbiased average of O(R) is:

N
Oi e'BVi
=1

(O®) = = ——.

N

3 BV

i=1

(55)

In the variational approach, once [V] has been minimized the bias potential becomes
time-independent and thus equation (S4) can be used rigorously to calculate ensemble av-

erages in the unbiased ensemble.



This formalism can be applied to the construction of a normalized histogram N (s, t) of
a collective coordinate s. The asymptotic value of N(s,t) can be written as an ensemble

average,

lim N(s,t) = P(s) = (8]s — s(R)]), (S6)

t—o00

with P(s) the probability to observe a given value of the CV s. Therefore equation (S4)
can be directly employed to calculate N(s,t) in an biased simulation. In practice, instead
of using 6[s — s(R)] one takes window functions W (s, s;, w) of width w centered at k points
S; = 81, ..., Sg, With s; —s;_1 = w. The normalized histogram can then be converted into a

free energy employing the formula?®:
L.
F(s)=—= 1thlrn log N(s,1). (S7)
—00

This is the procedure we have employed in this work to obtain the reweighted free energies

as a function of n;.

The cluster size distribution is intuitively defined as the average number of clusters of
each size n. On more formal grounds, if N, (R) is the number of clusters of size n for a
given configuration R, then the cluster size distribution can be rigurously defined as (N,,).
Once that the cluster size distribution has been expressed as an ensemble average, it is
possible to employ equation (S4) to calculate it from a biased simulation. We shall denote
by N,(t) the estimation at time ¢ of (NV,,), and if the sampling is ergodic (N,,) = tlggo N, (1)

holds. Then, a free energy F'(n) can be associated to the cluster size distribution using:
1. —
F(n) = —= lim log N,,(t). (S8)
6 t—o0

We point out that the cluster size distribution depends on the specific ensemble that is



used for the calculation®. In this work, the introduction of the barrier at sy leads to the

constrained equilibrium ensemble envisioned in the classical theory of nucleation®.

3 Collective variable

As described in the main manuscript, the bias potential V' (s) was constructed as a function
of the total number of liquid-like atoms (n;). In this section we provide details for the
calculation of this CV.

We define n; as the number of atoms that have a coordination number larger than ¢
within a radius ry. In order to use n; to construct the bias potential one needs to define it in
a continuous and differentiable fashion. The calculation of n; can be thought of as divided

in two stages. The first in which the coordination number of each atom is calculated as,

¢ = Z i (S9)

Nz
ij
jEneigh1 - (7“0>

where i is the atom index, j runs over all neighbors of atom ¢, and r;; is the distance
between atoms ¢ and j. In a second stage the number of atoms having a coordination

number larger than ¢ is evaluated with:

=y ﬁ (S10)

—24 -
Ci
1€ atomsl - (i)

For all the simulations we have employed o = 1.5 and ¢q = 4.5.
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