Supporting Information for

Vibration-Induced-Emission (VIE) for imaging Amyloid β fibrils

Wei-Tao Dou, Wei Chen, Xiao-Peng He,* Jianhua Su and He Tian*

Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, PR China

Email: <u>xphe@ecust.edu.cn</u> (X.-P. He) <u>tianhe@ecust.edu.cn</u> (H. Tian)

Contents list:

- S1. Additional figures
- S2. Additional experimental section
- S3. Original NMR and MS copies of VN
- S4. Additional reference

S1. Additional figures

Figure S1. (a) Fluorescence ratiometric titration of **VN** (10 μ M) in the presence of increasing A β 42 peptide monomer (A β 42/m, 0-32 μ M) in Tris-HCl buffer solution (0.01 M, pH 7.4) with an excitation of 365 nm. (b) Plotting the ratiometric change of **VN** in the presence of increasing A β 42/m.

Figure S2. Plotting the fluorescence intensity change (where F and F₀ are the fluorescence intensity of **VN** at I_{470} in the presence and absence of analyte, respectively) as a function of increasing (a) A β 40 peptide monomer, (b) A β 40 peptide fibril, (c) A β 42 peptide monomer and (d) A β 42 peptide fibril in Tris-HCl buffer solution (0.01 M, pH 7.4) with an excitation of 365 nm. The limit of detection (LOD) was calculated by $3\sigma_b/k$, where σ_b is the standard deviation of blank buffer solution and k the slope of plots.

Figure S3. Stacked fluorescence spectra of **VN** (10 μ M) in the absence and presence of 20 μ M of different proteins in Tris-HCl buffer solution (0.01 M, pH 7.4) with an excitation of 365 nm (WGA = wheat germ agglutinin; Pep = pepsin; SBA = soybean agglutinin; PNA = peanut agglutinin; Con A = Concanavalin A; HSA = human serum albumin; BSA = bovine serum albumin; Aβ40 = amyloid β 40 fibril; Aβ42 = amyloid β 42 fibril).

Figure S4. Fluorescence ratiometric titration of **VN** (10 μ M) in the presence of increasing (a) BSA (0-20 μ M), (b) HSA (0-20 μ M), (c) Aβ40/f (0-20 μ M) and (d) Aβ42/f (0-20 μ M) in Tris-HCl buffer solution (0.01 M, pH 7.4) with an excitation of 365 nm.

Figure S5. Cell viability of (a) 293T (human embryonic kidney cell line) and (b) L02 (human hepatocyte) measured by an MTS assay; the compounds were incubated with the cells for 30 min prior to a 72 h cell viability assay.²

S2. Additional experimental section

General. All purchased chemicals and reagents are of analytical grade. Amyloid- β peptides were purchased from GL Biochem (Shanghai) Ltd. ¹H NMR and ¹³C NMR spectra were recorded on Brucker AM-400 spectrometer. Chemical shifts were reported in ppm relative to a tetramethylsilane (TMS) standard in CDCl₃ or DMSO-*d*₆. Mass spectra (MS) were obtained on a Waters LCT Premier XE spectrometer. Fluorescence spectra were recorded on a Varian Cray Eclipse. Transmission electron microscopy (TEM) images were obtained on a JEOL 100CX transmission electron microscope operating at an accelerating bias voltage of 100 kV. Dynamic light scattering (DLS) was carried out on a Horiba LB-550 Dynamic Light Scattering Nano-Analyzer.

Synthesis. The synthesis of VN is shown in Scheme S1 below. Synthesis of VR has been described by us previously.¹

Scheme S1. Synthetic scheme of compound VN. (i) 2-Iodo-1,4-dimethoxybenzene, K_2CO_3 , $Cu(CF_3SO_3)_2$ and 1,3,5-trichlorobenzene; (ii) BBr₃ in CH₂Cl₂; (iii) 1,4-Dibromobutane, K_2CO_3 in MeCN; (iv) trimethylamine in THF.

Experimental procedures for the synthesis of compound VN

9-(2,5-Dimethoxyphenyl)-14-phenyl-9,14-dihydrodibenzo[a,c]phenazine (2). Compound **1** (3.6 g, 10 mmol), 2-iodo-1,4-dimethoxybenzene (2.7 g, 10 mmol), K_2CO_3 (2.1 g, 15 mmol), $Cu(CF_3SO_3)_2$ (0.9 g, 2.5 mmol) and 1,3,5-trichlorobenzene (10 g) were added in a 100 mL flask. The mixture was stirred for 10 h under dry atmosphere. Then the solvent was distilled

under reduced pressure and the solid was washed with CH₂Cl₂ (20 mL) three times. The solvent was distilled under reduced pressure and the crude product was purified by column chromatography on silica (Petroleum ether [PE]/EtOAc = 30:1, v/v) to afford a light yellow solid (2.5 g, 50%). ¹H NMR (400 MHz, CDCl₃, δ): 8.69 (d, *J* = 8.8Hz, 2H), 8.23 (t, *J* = 7.6 Hz, 2H), 7.84-7.79 (m, 1H), 7.64-7.53 (m, 4H), 7.43 (t, *J* = 8.0 Hz, 1H), 7.24-7.17 (m, 2H), 7.07 (t, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 9.2 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 2H), 6.79 (t, *J* = 7.2 Hz, 1H), 6.67 (q, *J* = 3.2 Hz, 1H), 6.38 (d, *J* = 2.8 Hz, 1H), 4.07 (s, 3H), 2.93 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆, δ): 153.49, 150.26, 149.83, 147.26, 140.11, 139.22, 137.01, 133.33, 130.20, 129.55, 129.22, 129.04, 128.61, 128.05, 127.89, 127.38, 127.17, 126.93, 126.70, 124.38, 123.93, 123.65, 122.15, 120.82, 115.57, 115.03, 114.56, 114.02, 56.46, 55.38. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₃₄H₂₇N₂O₂, 495.2073, found 495.2070.

2-(14-Phenyldibenzo[a,c]phenazin-9(14H)-yl)benzene-1,4-diol (3). To a solution of **2** (1.23 g, 2.5 mmol) in 30 mL CH₂Cl₂, BBr₃ (0.7 mL, 7.5 mmol) dissolved in 10 mL CH₂Cl₂ was added at 0 °C under Ar atmosphere. The mixture was stirred at room temperature for 8 h. Then the reaction was quenched by 100 mL water and the organic layer was purified by column chromatography on silica (PE/EA = 2:1, v/v) to afford a gray solid (0.8 g, 69%). ¹H NMR (400 MHz, DMSO-*d*₆, δ): 9.82 (s, 1H), 8.85 (t, *J* = 7.8 Hz, 2H), 8.58 (s, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 8.01 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.83 (m, 1H), 7.71-7.66 (m, 1H), 7.62-7.58 (m, 3H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.24-7.18 (m, 2H), 7.17-7.13 (m, 2H), 6.94-6.87 (m, 4H), 6.52 (dd, *J* = 8.8, 2.9 Hz, 1H), 6.15 (d, *J* = 2.9 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆, δ): 150.43, 149.96, 147.06, 147.03, 139.51, 138.68, 135.62, 132.13, 130.23, 129.41, 129.04, 128.95, 128.32, 127.73, 127.26, 127.05, 126.91, 126.49, 126.34, 124.11, 123.78, 121.47, 121.37, 118.10, 116.80, 116.15, 115.68. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₃₂H₂₃N₂O₂, 467.1760, found 467.1766.

9-(2,5-Bis(4-bromobutoxy)phenyl)-14-phenyl-9,14-dihydrodibenzo[a,c]phenazine (4). Compound **3** (0.47 g, 1 mmol), 1,4-dibromobutane(0.32 g, 1.5 mmol) and K₂CO₃ (0.4 g, 3 mmol) in 30 mL MeCN were refluxed under Ar atmosphere for 6 h. After cooling, the solvent was distilled under reduced pressure and the crude product was purified by column chromatography on silica (PE/CH₂Cl₂ = 20:1, v/v) to afford a light yellow solid (0.7 g, 95%). ¹H NMR (400 MHz, DMSO-*d*₆, δ): 8.88 (d, *J* = 8.4 Hz, 2H), 8.21 (d, *J* = 8.4 Hz, 1H), 8.07-8.11 (m, 1H), 7.62-7.78 (m, 5H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.20-7.31 (m, 3H), 7.17 (t, *J* = 16.0 Hz, 2H), 6.84-6.89 (m, 3H), 6.71-6.75 (m, 1H), 6.23 (d, *J* = 3.2 Hz, 1H), 4.37 (t, *J* = 6.0 Hz, 2H), 3.65 (t, *J* = 6.4 Hz, 2H), 3.40 (t, *J* = 6.4 Hz, 2H), 2.99 (t, *J* = 6.0 Hz, 2H), 2.04-2.17 (m, 4H), 1.65 (dt, *J* = 6.8, 14.4 Hz, 2H), 1.44 (dt, *J* = 6.0, 13.2 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆, δ): 152.72, 149.98, 149.41, 147.62, 140.31, 139.43, 137.07, 133.70, 130.20, 129.58, 129.22, 129.06, 128.75, 128.14, 127.93, 127.36, 127.25, 126.98, 126.76, 124.44,

123.92, 123.68, 122.37, 120.75, 115.69, 115.52, 114.98, 114.40, 67.88, 66.94, 35.29, 35.18, 29.91, 29.30, 28.29, 27.46. HRMS (ESI) *m/z*: C₄₀H₃₇Br₂N₂O₂, 735.1222, found 735.1222.

VN. Compound 4 (0.35 g, 0.8 mmol), trimethylamine (excessive) in 30 mL THF were stirred under Ar atmosphere at 35 °C for three days. After cooling, the product was filtered and washed with THF to afford **VN** as a light green solid (0.3 g, 75%). ¹H NMR (400 MHz, DMSO- d_6 , δ): 8.90 (d, J = 14.0 Hz, 2H), 8.21 (d, J = 7.7 Hz, 1H), 8.10 (d, J = 9.5 Hz, 1H), 7.74 (d, J = 11.5 Hz, 2H), 7.67 (d, J = 24.5 Hz, 3H), 7.58 (t, J = 7.4 Hz, 1H), 7.29 (d, J = 26.4 Hz, 3H), 7.21-7.15 (m, 2H), 6.89 (dd, $J_I = 16.9$ Hz, $J_2 = 7.8$ Hz, 3H), 6.79 (dd, $J_I = 9.1$ Hz, $J_2 = 3.0$ Hz, 1H),6.27 (d, J = 3.0 Hz, 1H), 4.39 (t, J = 5.2 Hz, 2H), 3.49-3.41 (m, 2H), 3.18 (d, J = 16.9 Hz,2H), 3.00 (t,J = 14.4 Hz, 20H), 2.07-1.92 (m, 4H), 1.55 (d, J = 31.7 Hz,2H), 1.36 (d, J = 26.1 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6 , δ): 152.29, 149.59, 149.03, 147.00, 139.67, 138.77, 136.55, 133.06, 129.73, 129.17, 128.70, 128.53, 128.16, 127.65, 127.53, 126.95, 126.78, 126.56, 126.35, 123.98, 123.54, 123.13, 121.67, 120.37, 115.43, 115.18, 114.64, 113.86, 67.68, 66.58, 64.92, 64.76, 52.02, 26.20, 25.32, 19.59, 19.02. HRMS (ESI) m/z: C₄₆H₅₄N₄O₂²⁺, 347.2123, found 347.2111.

Αβ40 Αβ42 Sample preparation. and peptide powder was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) at a concentration of 1 mg mL⁻¹, which was stored at -20 °C as a stock solution. Prior to use, HFIP was removed by evaporation under a gentle stream of nitrogen and the peptide was redissolved in a Tris-HCl buffer solution (0.01 M, pH 7.4). A β 40 and A β 42 fibrogenesis was accomplished by mixing an aliquot of the peptides from the stock solution into a buffer (0.01 M Tris in 0.01 M NaCl, pH 7.4) at 37 °C for one to seven days.

Fluorescence spectroscopy. In a typical fluorescence assay, a VIEgen dissolved in Tris-HCl (0.01 M, pH 7.4) was incubated with A β peptides/fibrils of different concentrations for 2 min at room temperature. Then, fluorescence spectrum was recorded with a Varian Cary Eclipse fluorescence spectrophotometer with an excitation of 365 nm.

Staining of transgenic mouse section. Double transgenic mice (APPsw/PS1De9, 5 months old, male) were perfused in cold saline and 4% paraformaldehyde, then sacrificed. Brains were taken and fixed in 4% paraformaldehyde overnight, and dehydrated in 30% sucrose. Then OCT (optimum cutting temperature compound)-embedded tissues were sliced into serial sections (20 μ m thick) in frozen section machine. Sections were treated with PBS for 10 min, and then incubated with VN (40 μ M) for 30 min. Then, the sections were gently washed with PBS three times and mounted by 50% glycerin (dissolved in PBS). The fluorescence images were recorded using a fluorescence microscope (Olympus, Japan).

S3. Original NMR and MS copies of VN

¹³C NMR spectrum of VN

Elemental Composition Report

.

Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 168 formula(e) evaluated with 5 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-46 H: 0-60 N: 0-4 O: 0-2 Br: 0-2

H-TIAN				ECUST instit	ute of Fine Che	m			11-Apr-2016 20:37:29	
TH-LY-15 177 (1.186) Cm (172:181)			–N Br					1: TOF MS ES+ 1.26e+004		
100 347.	2111 347.7143					⊛ Br I				
%	362. 348.2171 357.2618	3282 363.3326	381.29	⁸⁹ ,384.3123 ⁴		3557 415.3047	428.3371	437.1978	5.3160 450.3818	
340 345	350 355 360	365 370	375 380	385 390 39	95 400 405	410 415 420	425 430	435 440	445 450	
Minimum: Maximum:		300.0	50.0	-1.5 100.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norr	n) Formula			
347.2111	0.17 0100	1 0	0.5	11 5	17 1	A A		7 110 0		
O I I D I I I	347.2123	-1.2	-3.0	11.5	47.4	0.0	CZ3 HZ	/ NZ O		

HRMS spectrum of VN

Page 1

S4. Additional reference

- 1. Z. Zhang, Y.-S. Wu, K.-C. Tang, C.-L. Chen, J.-W. Ho, J. Su, H. Tian and P.-T. Chou, J. *Am. Chem. Soc.*, 2015, **137**, 8509-8520.
- 2. X.-P. He, Q. Deng, L. Cai, C.-Z. Wang, Y. Zang, J. Li, G.-R. Chen and H. Tian, ACS Appl. Mater. Interfaces, 2014, 6, 5379-5382.