## **Supporting information**

## Kinetic aspects of chain growth in Fischer-Tropsch synthesis

Ivo A.W. Filot<sup>1,2</sup>, Bart Zijlstra<sup>1</sup>, Robin J.P. Broos<sup>1,2</sup>, Wei Chen<sup>1</sup>, Robert Pestman<sup>1</sup>, and Emiel J.M. Hensen<sup>1,2,\*</sup>

<sup>1</sup> Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

<sup>2</sup> Netherlands Center for Multiscale Catalytic Energy Conversion, Universiteitsweg 99, 3585 CG, Utrecht, The Netherlands

E-mail: e.j.m.hensen@tue.nl

Table S1: List of all elementary reaction steps surfaces and their corresponding forward and backward activation energies used to model FT synthesis over Ru(11-21). The reported forward and reverse energies are in relation to the most stable states found for the reactants and products and include zero-point-energy corrections.

| Index | Elementary reaction                                                                      | Forward E <sub>act</sub> (kJ/mol) | Backward E <sub>act</sub> (kJ/mol) |
|-------|------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|
| 1     | $CO* + * \rightarrow C* + O*$                                                            | 65                                | 90                                 |
| 2     | $CO* + H* \rightarrow HCO* + *$                                                          | 80                                | 5                                  |
| 3     | $\mathrm{HCO}^{*} + ^{*} \rightarrow \mathrm{CH}^{*} + \mathrm{O}^{*}$                   | 45                                | 129                                |
| 4     | $C^* + H^* \rightarrow CH^* + *$                                                         | 40                                | 39                                 |
| 5     | $\mathrm{CH}^* + \mathrm{H}^* \xrightarrow{} \mathrm{CH}_2^* + *$                        | 75                                | 37                                 |
| 6     | $\mathrm{CH}_2^* + \mathrm{H}^*  \mathrm{CH}_3^* + *$                                    | 57                                | 47                                 |
| 7     | $CH_3^* + H^* \rightarrow CH_4 + 2^*$                                                    | 94                                | 57                                 |
| 8     | $C^* + C^* \rightarrow CC^* + *$                                                         | 138                               | 144                                |
| 9     | $C^* + CH^* \rightarrow CCH^* + *$                                                       | 129                               | 75                                 |
| 10    | $C^* + CH_2^*  CCH_2^* + *$                                                              | not found                         |                                    |
| 11    | $C^* + CH_3^* \rightarrow CCH_3^* + *$                                                   | 92                                | 116                                |
| 12    | $CH^* + CH^* \rightarrow CHCH^* + *$                                                     | 149                               | 117                                |
| 13    | $CH^* + CH_2^* \rightarrow CHCH_2^* + *$                                                 | not found                         |                                    |
| 14    | $CH^* + CH_3^* \rightarrow CHCH_3^* + *$                                                 | not found                         |                                    |
| 15    | $\mathrm{CH}_{2}^{*} + \mathrm{CH}_{2}^{*}  \mathrm{CH}_{2}^{*} \mathrm{CH}_{2}^{*} + *$ | 54                                | 60                                 |
| 16    | $\mathrm{CH}_{2}^{*} + \mathrm{CH}_{3}^{*}  \mathrm{CH}_{2}^{*} \mathrm{CH}_{3}^{*} + *$ | not found                         |                                    |
| 17    | $CC^* + H^* \rightarrow CCH^* + H^*$                                                     | 104                               | 72                                 |
| 18    | $\mathrm{CCH}^* + \mathrm{H}^*  \mathrm{CCH}_2^* + *$                                    | 82                                | 129                                |
| 19    | $\mathrm{CCH}_2^* + \mathrm{H}^* \xrightarrow{} \mathrm{CCH}_3^* + *$                    | 19                                | 4                                  |
| 20    | $CCH* + H* \rightarrow CHCH* + *$                                                        | 140                               | 162                                |
| 21    | $\mathrm{CCH}_2^* + \mathrm{H}^*  \mathrm{CHCH}_2^* + *$                                 | 82                                | 21                                 |

| 22 | $\mathrm{CCH}_3^* + \mathrm{H}^*  \mathrm{CHCH}_3^* + *$  | 82  | 8  |
|----|-----------------------------------------------------------|-----|----|
| 23 | $CHCH^* + H^* \rightarrow CHCH_2^* + *$                   | 83  | 46 |
| 24 | $CHCH_2^* + H^* \rightarrow CHCH_3^* + *$                 | 62  | 34 |
| 25 | $CHCH_2^* + H^* \rightarrow CH_2CH_2^* + *$               | 45  | 42 |
| 26 | $CHCH_3^* + H^* \rightarrow CH_2CH_3^* + *$               | 19  | 23 |
| 27 | $CH_2CH_2^* + H^* \rightarrow CH_2CH_3^* + *$             | 58  | 34 |
| 28 | $CH_2CH_3^* + H^* \rightarrow CH_3CH_3^* + *$             | 112 | 71 |
| 29 | $O* + H* \rightarrow OH* + *$                             | 97  | 49 |
| 30 | $OH^* + H^* \rightarrow H_2O^* + *$                       | 89  | 15 |
| 31 | $2\mathrm{OH}^*  \mathrm{H}_2\mathrm{O}^* + \mathrm{O}^*$ | 54  | 11 |



Figure S1: Degree of rate control for the microkinetics simulations of the stepped Ru surface at 20 atm and  $H_2/CO = 2$ , exemplifying that under all conditions O removal from the surface is controlling the overall CO consumption rate.