Supporting Information

Photocatalytic H₂ production by a hybrid assembly of [FeFe]-hydrogenase model and CdSe quantum dot linked through a thiolato-functionalized cyclodextrin⁺

Minglun Cheng,^a Mei Wang,^{*a} Shuai Zhang,^a Fengyuan Liu,^a Yong Yang,^a Boshun Wan^b and Licheng Sun^{ac}

^aState Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China. E-mail: <u>symbueno@dlut.edu.cn</u>

^bDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

^cDepartment of Chemistry, KTH Royal Institute of Technology, Stockholm 10044, Sweden.

Fig. S1 UV-vis spectra of (a) β -CD-6-S-CdSe QDs sampled at the refluxing interval of 30 min and (b) MAA-CdSe QDs sampled at the refluxing interval of 3 h.

Fig. S2 Fluorescence spectra of (a) β -CD-6-S-CdSe QDs sampled at the refluxing interval of 30 min and (b) MAA-CdSe QDs sampled at the refluxing interval of 3 h.

Fig. S3 Mass spectrum of $1/\beta$ -CD-6-SH formed in situ in water.

Fig. S4 Cyclic voltammograms of β -CD-6-S-CdSe and MAA-CdSe QDs in water using a saturated KCl Ag/AgCl reference electrode at pH 4.5.

Fig. S5 Changes of UV-vis absorptions of β -CD-6-S-CdSe QDs in water at varying pH from 7 to 1.4.

Fig. S6 Long-time photocatalytic H₂ evolution of the system of β -CD-6-S-CdSe QDs (1.0 × 10⁻⁴ M), **1** (1.0 × 10⁻⁵ M), and H₂A (0.28 M) in water at pH 4.5 under illumination, with addition of extra **1** or β -CD-6-S-CdSe QDs after 14 h of illumination.