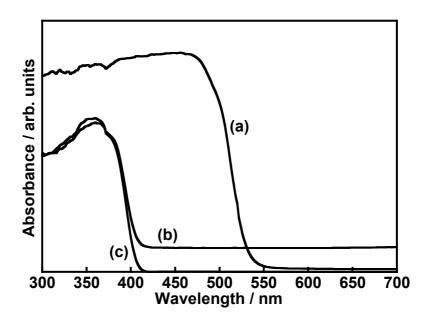

Supporting Information

Photocatalytic CO₂ Reduction Using Water as an Electron Donor by A Powdered Z-Scheme System Consisting of Metal Sulfide and An RGO-TiO₂ Composite

Tomoaki Takayama,¹ Ko Sato,¹ Takehiro Fujimura,¹ Yuki Kojima,¹ Akihide Iwase,^{1, 2} Akihiko Kudo*^{1, 2}

¹Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan; ²Photocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan

*Corresponding author, Fax: +81-3-5261-4631, E-mail: a-kudo@rs.kagu.tus.ac.jp


Figure S1. Analysis of products for ¹³CO₂ reduction over a Z-schematic photocatalyst system consisting of CuGaS₂ and RGO-TiO₂.

Catalyst: 0.2 (CuGaS₂) and 0.4 (RGO-TiO₂) g, reactant solution: 360 mL of water under 1 atm of 13 CO₂ atmosphere, reactor: a gas flow system using an inner irradiation cell made of Pyrex, light source: a 400 W high-pressure mercury lamp. The elevated background for 12 CO is due to N₂ of an impurity in a carrier gas.

Table S1 Effect of loading cocatalyst on CO_2 reduction using water as an electron donor on $CuGaS_2$ -(RGO-TiO₂) of a Z-scheme photocatalyst system.

Entry	CO ₂ -photocatalyst		O ₂ -photocatalyst	Gas	Activity / μmol h ⁻¹		e-/h+	
	Cocatalyst	Metal sulfide	Metal oxide		H_2	O_2	CO	
1	None	CuGaS ₂	RGO-TiO ₂	CO_2	28.8	11.2	0.15	1.29
2	Pt ^{a)}	$CuGaS_2$	RGO-TiO ₂	CO_2	33.1	14.1	0.09	1.18
3	$Ru^{b)}$	$CuGaS_2$	RGO-TiO ₂	CO_2	32.0	13.1	0.04	1.22
4	Rh ^{b)}	$CuGaS_2$	RGO-TiO ₂	CO_2	17.7	6.9	0.04	1.29
5	Ag ^{a)}	$CuGaS_2$	RGO-TiO ₂	CO_2	17.2	4.4	0.11	1.97

Catalyst: 0.1 g each, reactant solution: 120 mL of water under 1 atm of CO_2 , reactor: a gas flow system using a top-irradiation cell made of Pyrex, light source: a 300 W Xe-lamp ($\lambda > 330$ nm). Loading method: ^{a)} adsorption, ^{b)} photodeposition.

Figure S2. Diffuse reflectance spectra of (a) $CuGaS_2$, (b) RGO(5 wt%)-incorporated TiO_2 (rutile), and (c) pristine TiO_2 (rutile).