Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2016

Supporting Information.

Stable hybrid organic/inorganic photocathodes for hydrogen evolution with amorphous WO₃ hole selective contact.

Alessandro Mezzetti, ^{1,2} Fumagalli Francesco, ¹ Antonio Alfano, ^{1,3} Daniele Iadicicco, ^{1,4} Maria Rosa Antognazza ¹ and Fabio di Fonzo. ^{1,*}

To convert from the measured reference electrode potential (versus Ag/AgCl in saturated KCl) to the reversible hydrogen electrode (RHE) potential, the following equation is used:

$$E_{RHE} = E_{Ag/AgCl} + 0.0591 \times pH + E_{Ag/AgCl}^{0} \quad \left[E_{Ag/AgCl}^{0} = + \ 0.1976 \ V \right]$$

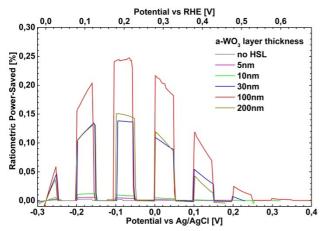


Figure S1. Ratiometric power saved curves as a function of the applied bias for a series of hybrid organic photocathodes with varying thickness of the amorphous WO₃ layer. The peak of the curve is the maximum power point in the corresponding linear sweep voltammetry curve.

The depletion layer with x_d is calculated with the following equation, derived from Poisson's equations under the full depletion approximation for a metal/semiconductor junction:

$$x_d = \sqrt{\frac{2\varepsilon_s(\varphi_m - \varphi_s)}{qN_d}}$$
 [Eq. S1]

where ε_s is the relative dielectric permittivity of the semiconductor, $\varphi_{m/s}$ is the work function of the metal and of the semiconductor, q is the electron charge and N_d is the donor density of the semiconductor.

¹ Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy.

² Politecnico di Milano, Dipartimento di Fisica, P.zza L. da Vinci 32, 20133 Milano, Italy.

³ Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Piazza Leonardo da Vinci, 32, 20133 Milano, Italy

⁴ Politecnico di Milano, Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano, Italy.

^{*} Corresponding author, e-mail: fabio.difonzo@iit.it

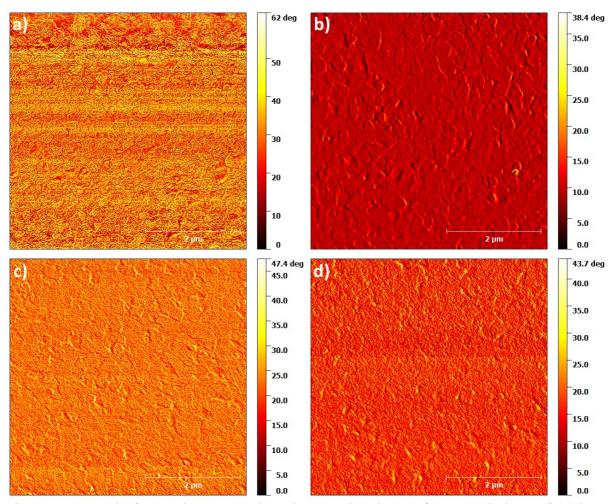


Figure S2. Atomic force microscopy phase images showing surface morphology of (a) bare ITO and (b-d) ITO/WO₃ with different WO₃ HSL thickness (5 nm, 30 nm and 100 nm respectively).

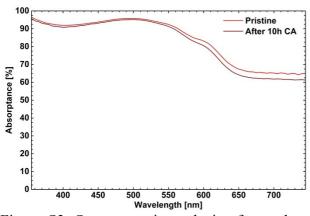


Figure S3. Spectroscopic analysis of complete photocathode architecture showing the UV-Vis-nIR absorptance spectra of a pristine device and of a device that has undergone a 10-hour chronoamperometry.