Effect of crystallite size on the performance and phase transformation of Co_3O_4/Al_2O_3 catalysts during CO-PrOx - An *in situ* study

Thulani M. Nyathi,^a Nico Fischer,^a Andy P. E. York^b and Michael Claeys^{a,*}

Magnetism

Ferromagnetism: Materials that exhibit this behaviour are attracted by an applied magnetic field (symbol: **H**, units: **T** (Tesla) or **kOe** (kilo-Oersted)) via the parallel alignment of neighbouring electron spins forming microscopic regions called magnetic domains.¹⁻³ Upon removal of this external field, the material or a fraction of it, remains magnetised and the observed magnetisation is called remnant magnetisation (**M**_{rem}). This behaviour is a result of the strong coupling between the neighbouring electron spins.³ Ferromagnetism is temperature-dependent and material-specific therefore, there exists a critical temperature above which ferromagnetic materials lose their ferromagnetic character and become paramagnetic. This critical temperature is called the Curie temperature (**T**_c). The loss in ferromagnetic behaviour above T_c is a result of an increase in the thermal energy which mitigates the strong interaction between neighbouring spins.³

Superparamagnetism: This is a special case of ferromagnetism whereby small crystallites (normally in the nanometre range) completely lose their magnetisation upon removal of the external field.⁴ Superparamagnetism is crystallite size-dependent and material-specific therefore, there exists a critical crystallite size whereby a ferromagnetic sample will display superparamagnetic behaviour.⁴

Antiferromagnetism: Is almost like ferromagnetism except that the neighbouring spins align themselves in opposite directions in the presence of an applied field.¹⁻³ Antiferromagnetic behaviour is also temperature-dependent and the critical temperature below which antiferromagnetic behaviour can be observed is called the Néel temperature (T_N). Above this critical temperature, antiferromagnetic materials also become paramagnetic.³ crystallite size in the absence of H_2 .¹⁴⁻¹⁶ To the best of our knowledge, studies investigating the effect of crystallite size on the catalytic activity of Co₃O₄ during CO-PrOx have not been reported.

Magnetometer calibration

Figure S.1: Sample magnetisation of a 0.1 g pre-reduced metallic cobalt sample as a function of temperature.

$$m_{Co\ formed}\ (g) = \frac{M_{experimental} \cdot 0.1\ g}{M_{calibration}}$$
Equation S.1
Degree of reduction (%) = $\frac{m_{Co\ formed}}{0.73 \cdot m_{Co_3O_4\ loaded}} \times 100$
Equation S.2

^aCatalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Rondebosch 7701, South Africa. ^bJohnson Matthey Technology Centre, Sonning Common, Reading RG4 9NH, United Kingdom. *Corresponding author: Michael.Claeys@uct.ac.za Where $m_{Co\ formed}$ is the mass of cobalt formed at temperature T_i . $M_{experimental}$ is the sample magnetisation (unit: emu) measured at temperature T_i during the CO-PrOx experiment and $M_{calibration}$ is the magnetisation (unit: emu) measured at temperature T_i during the calibration of the magnetometer with a 0.1 g metallic cobalt sample. $m_{Co_3O_4\ loaded}$ is the initial Co₃O₄ mass loading as determined by EDX.

TEM of fresh catalysts

Figure S.2: Selected TEM micrographs of the fresh samples of the supported samples of (*left*) TN_01 and (*right*) TN_05. The white dotted circles show single and/or a cluster of Co_3O_4 crystallites.

In situ characterisation and kinetic data

Figure S.3: (*top*) On-top view of the PXRD patterns recorded for TN_02, (*middle*) the normalised outlet flow rates of CO, CO_2 and CH_4 , (*bottom*) as well the changes in the degree of reduction calculated from the magnetometer-derived data.

Figure S.4: (*top*) On-top view of the PXRD patterns recorded for TN_03, (*middle*) the normalised outlet flow rates of CO, CO_2 and CH_4 , (*bottom*) as well the changes in the degree of reduction calculated from the magnetometer-derived data.

Figure S.5: (*top*) On-top view of the PXRD patterns recorded for TN_04, (*middle*) the normalised outlet flow rates of CO, CO_2 and CH_4 , (*bottom*) as well the changes in the degree of reduction calculated from the magnetometer-derived data.

Figure S.6: CO_2 selectivity based on the conversion of O_2 as a function of temperature for the catalysts TN_02 - TN_04.

The normalised outlet flowrates of CO ($^{N_{CO}}$), CO₂ ($^{N_{CO}}$) and CH₄ ($^{N_{CH}}$), as well as the CO₂ selectivity based on the conversion of O₂ ($^{S_{CO}}$) and the surface area-specific CO₂ formation rate ($^{r_{CO}}$) were all calculated using Equations S.1 – S.5. The conversion of H₂ was too low to be accurately measured during the runs, however, it is worth mentioning that the H₂O selectivity based on the conversion of O₂ ($^{S_{H_2O}}$) can be expected to be $100 - S_{CO_2}^{O_2}$.

$$N_{CO} = \frac{n_{CO, out}}{n_{CO, in}} = \frac{n_{CO_2, out} - n_{CH_4, out}}{n_{CO, in}}$$
Equation S.3
$$N_{CO_2} = \frac{n_{CO_2, out}}{n_{CO, in}} = \frac{n_{CO, out} - n_{CH_4, out}}{n_{CO, in}}$$
Equation S.4
$$N_{CH_4} = \frac{n_{CH_4, out}}{n_{CO, in}} = \frac{n_{CO, out} - n_{CO_2, out}}{n_{CO, in}}$$
Equation S.5
$$S_{CO_2}^{O_2} (\%) = \frac{n_{CO_2, out}}{n_{CO, in}} \times 100 = \frac{n_{CO, out} - n_{CO, out} - n_{CH_4, out}}{n_{CO, out} - n_{CO, out} - n_{CH_4, out}} \times 100$$
Equation S.6

$$2 \cdot (n_{O_{2}, in} - n_{O_{2}, out}) = 2 \cdot (n_{O_{2}, in} - n_{O_{2}, out})$$

$$r_{CO_{2}, out} \cdot d_{c, n} \cdot \rho_{CO_{3}O_{4}} \cdot N_{A}$$
Foundation S.7.

$$r_{CO_2}(molec_{CO_2}.nm^{-2}.s^{-1}) = \frac{2}{6 \cdot m_{CO_3O_4}loaded} Equation S.7$$

Where $n_{CO, in}$ and $n_{O_2, in}$ are the molar gas flow rates of CO and O₂ respectively, entering the reactor under reaction conditions. $n_{CO, out}$, $n_{O_2, out}$, $n_{CO_2, out}$ and $n_{CH_4, out}$ are the molar gas flow rates of CO, O₂, CO₂ and CH₄ respectively, exiting the reactor under reaction conditions. $d_{c,n}$ is the average TEM number-based crystallite size assuming no or negligible sintering (in nm), $\rho_{CO_3O_4}$ is the density of CO₃O₄ (in g.nm⁻³), N_A is Avogadro's number (in molecules per mole) and $m_{CO_3O_4}$ loaded is the initial CO₃O₄ mass loading as determined by EDX.

TEM of spent catalysts

Figure S.7: Selected TEM micrographs of the spent samples of (*left*) TN_01 and (*right*) TN_05. The white dotted circles show single and/or a cluster of Co_3O_4 crystallites.

References

- 1 Buschow, K. H. J. *Encyclopedia of Materials: Science and Technology*; Amsterdam, Netherlands: Elsevier, 2001; Vol. 5, p. 5021.
- 2 Kittel, C. Introduction to Solid State Physics; London: John Wiley & Sons, Inc., 2009.
- 3 Serway, R., Jewett, Jr., J. *Physics for Scientists and Engineers with Modern Physics*; Boston: Brooks/Cole, 2014.
- 4 Dalmon, J. Magnetic measurements and catalysis. In *Catalyst characterisation: Physical techniques for solid materials*; B. Imelik, B. & Verdrine, J., Eds.; New York: Plenum Press; p 585.