Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

Fe, Ru, and Os Complexes with the Same Molecular Framework: Comparison of Structures, Properties and Catalytic Activities

Masaki Yoshida,^a Mio Kondo,^{*abcd} Masaya Okamura,^{a,e} Mari Kanaike,^a Setsiri Haesuwannakij,^{abf} Hidehiro Sakurai^{df} and Shigeyuki Masaoka^{*abc}

^a Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.

^bSOKENDAI [The Graduate University for Advanced Studies], Shonan Village, Hayama, Kanagawa 240-0193, Japan.

^{c.}Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science (IMS), 38 Nishigo-naka, Myodaiji, Okazaki, Aichi 444-8585, Japan.

^dACT-C, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.

^e. Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan

^{f.}Department of Applied Chemistry Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan

Table of Contents

UV-visible Absorption Spectra	
Figure S1	
Figure S2	
Figure S3	
Electrochemical Measurements	
Figure S4	
References	

UV-visible Absorption Spectra

Figure S1. (a) UV-visible absorption spectra of $[\mathbf{Ru}-\mathbf{Cl}]^+$ (blue line) and $[\mathbf{Os}-\mathbf{Cl}]^+$ (green line) in an acetonitrile solution at 20 °C in air. (b) The comparison of UV-visible absorption spectra of $[\mathbf{Ru}-\mathbf{Cl}]^+$ in an acetonitrile solution (blue line) and $[\mathbf{Ru}-\mathbf{OH}_2]^{2+}$ in an aqueous solution (pale blue line) at 20 °C in air.

Figure S2. UV-visible absorption spectrum of $[Fe-OH_2]^{2+}$ in an aqueous solution at 20 °C in air.

Figure S3. (a) UV-visible absorption spectra of an aqueous solution of [**Ru-OH** $_2]^{2+}$ (28.3 μM) at 20 °C under Ar atmosphere (optical-path length: 1 cm) under various pH conditions (pH = 7.3-13.6, where pH values were adjusted with NaOH and Na₃PO₄). Well-anchored isosbestic points at 344, 356, and 387 nm are maintained throughout the pH range. (b) The dependence of the absorbance at 380 nm on pH. The pK_a value of [**Ru-OH** $_2]^{2+}$ was determined to be 11.6, which is higher than that of other ruthenium(II) pentapyridyl complex, such as $[Ru(terpy)(bpy)(OH_2)]^{2+}$ (pK_a = 9.7).¹ This pK_a value is similar to that of ruthenium(II) complex bearing strongly σ-donating ligand, such as $[Ru(tmtacn)(bpy)(OH_2)]^{2+}$ (pK_a = 11.8).²

Electrochemical Measurements

Figure S4. The cyclic voltammograms of $[Fe-OH_2]^{2+}$ and $[Ru-OH_2]^{2+}$ (0.5 mM) in an aqueous solution containing 0.5 M Na₂SO₄ (pH 5.31) under Ar atmosphere, recorded at a scan rate of 10 mV/s (working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, Hg/Hg₂SO₄).

References

- 1. K. J. Takeuchi, M. S. Thompson, D. W. Pipes and T. J. Meyer, *Inorg. Chem.*, 1984, 23, 1845.
- 2. M. Yoshida, S. Masaoka and K. Sakai, *Chem. Lett.*, 2009, **38**, 702.