Electronic Supporting Information

Field Induced Anomalous Spreading, Oscillation, Ejection, Spinning, and Breaking of Oil Droplets on Strongly Slipping Water Surface

Sunny Kumar,^a Bhaskarjyoti Sarma,^c Ahsok Kumar Dasmahapatra,^{a,b}, Amaresh Dalal,^c Dipankar Narayan Basu,^c and Dipankar Bandyopadhyay*^{a,b}

^aDepartment of Chemical Engineering, Indian Institute of Technology Guwahati, India ^bCentre for Nanotechnology, Indian Institute of Technology Guwahati, India ^cDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, India

Keywords: droplet, microfluides, electric field, magnetic field, electrowetting. Corresponding Author: <u>dipban@iitg.ernet.in</u>

Properties		Water	Teflon	Silicon oil	Oleic acid	Hexadecane
Dielectric constant	Е	80	2	2.5	2.5	2.1
Surface tension (mN/m)	γ	72	-	21	42	27
Interfacial tension (mN/m)		-	-	24	64	52
Density (kg/m³)	ρ	1000	-	971	895	770
Viscosity (Pa s)	μ	0.001	-	0.33	0.027	0.003
Conductivity	σ	5.6	-	0.8 ×10 ⁻⁶	10-6	10-6

Table SI: Physical properties of the experimental materials and fluid¹⁻⁷

Supporting Video 1. Expansion: The video shows the expansion or spreading of the oil droplet for the EWOL setup, as shown in Figure 1a. Here a 1 μ l hexadecane droplet expanded on the water surface when we abruptly applied 500 V.

Supporting Video 2. Oscillation: The video shows the oscillation of an oil droplet on the EWOL setup shown in Figure 1b. Here a 1 μ l of hexadecane droplet expanded and then oscillated on the water surface when we abruptly applied 550 V.

Supporting Video 3. Ejection: The video corresponds to the EWOL experimental setup shown in Figure 1c in which 1 μ l of hexadecane droplet ejected out of the electric field when we abruptly applied the 800 V.

Supporting Video 4. Expansion, Oscillation and Ejection of droplet: The video shows simultaneous expansion, oscillation, and ejection of the oil droplet in the EWOL setup when the applied potential was progressively increased at a rate of 8 V/s.

Supporting Video 5. Clockwise and Anti-Clockwise Rotation: The video corresponds to the setup shown in the Figure 1d, where the EWOL experiments were conducted on a permanent magnet. The video shows clockwise and anticlockwise rotational motions with the change in the direction of the magnet.

Supporting Video 6. Droplet Breaking: The video corresponds to the EWOL experiments on a magnet, as schematically shown in the Figure 1d. In this situation, the spreading due to the rotation of the droplet and the shear at the oil-water interface led to the droplet breakup.

References

- 1. E. A. van Nierop, A. Ajdari and H. A. Stone, Phys. Fluids, 2006, 18, 038105, 1-4.
- 2. P. Than, L. Preziosi, D. D. Josephl and M. Arney, J. Colloid Interface Sci., 1988, 124, 552-559.
- 3. H. B. d. Aguiar, A. G. F. d. Beer, M. L. Strader and S. Roke, *J. Am. Chem. Soc.*, 2010, **132**, 2122-2123.
- 4. P. Ehrlich, J. Res. Natl. Stand. 1953, 51, 185-188.
- 5. C. G. Malmberg and A. A. Maryott, J. Res. Natl. Bur. Stand. 1956, 56, 1-8.
- 6. S. Mhatre and R. Thaokar, Ind. Eng. Chem. Res., 2014, 53, 13488-13496.
- 7. US patent, US 6274067 B1, 2001.