This journal is © The Royal Society of Chemistry 2016

Supporting Information

Calculate example of the add amount of the $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in water group:
1 Reagent: The reagent of Copper sulfate pentahydrate was used. (Sigma, Aldrich, Germany, Ph.Eur.99102\%)

2 Stock solution: Weighting $0.9823 \mathrm{~g} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, dissolve it in ultra - pure water and make up the final volume to 250 mL . the copper concentration of the solution is:
$C u^{2+}(m g / m L)=0.9825 g \times 1000 \mathrm{mg} / \mathrm{g} \times \frac{63.55}{249.69} \div 250 \mathrm{~mL}=1 \mathrm{mg} / \mathrm{mL}$
3 Copper solution prepared: Add 6 mL stock solution to 1000 mL of volumetric flask, make up to the mark with ultra - pure water, the concentration of the water is $6 \mathrm{mg} \mathrm{Cu} / \mathrm{L}$.

4 Calculation: At first, the concentration of the water is 6,15 and 30 ppm . Take 6 ppm as an example. After first three days, the total amount of consumed feed is 169.9 g ; water is 165.6 g , so the copper is $1019.4 \mu \mathrm{~g}$ for diet group and $993.6 \mu \mathrm{~g}$ for water group.
$\frac{1019.4-993.6+1019.4}{993.6} \times 6 \mathrm{mg} / \mathrm{L}=6.3 \mathrm{mg} / \mathrm{L}$
Adjust the concentration in drinking water to 6.3 ppm in the next three days.
5 Add 6.3 mL stock solution to 1000 mL of volumetric flask, make up to the mark with ultra - pure water, the concentration of the water is $6.3 \mathrm{mg} \mathrm{Cu} / \mathrm{L}$. The level of 15 and 30 ppm are calculated and prepared by the same steps.

Supporting Table 1. Precise heating program of microwave:

Steps	Potency (W)	Time(min)		
		Ramp		Hold
	800	5	10	
2	1400	10	15	
3	0	$/$	20	

