Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting information for

Selective aldol condensation of biomass-derived levulinic acid and furfural in aqueous-phase over MgO and ZnO

Guanfeng Liang ^a, Aiqin Wang ^a*, Xiaochen Zhao ^a, Nian Lei ^{a, b}, and Tao Zhang ^a*

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

^b Graduate University of Chinese Academy of Sciences, Beijing 10049, China

*Corresponding author: Prof. Aiqin Wang

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences

No. 457 Zhongshan Road, Dalian, 116023, China.

Tel.: +86-411-84379348;

Fax: +86-411-84685940;

E-mail: <u>aqwang@dicp.ac.cn</u>

*Corresponding author: Prof. Tao Zhang Director, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023, China Tel:+86-411-84379015 Fax:+86-411-84691570 http://www.taozhang.dicp.ac.cn http://www.dicp.cas.cn E-mail: <u>taozhang@dicp.ac.cn</u>

Catalyst	Crystalline size/ nm	acid sites/ umol g ⁻¹	Normalised TOF / h ⁻¹
Nano-ZnO-250	15.5	119.2	34
Nano-ZnO-450	19.4	90.6	49
Nano-ZnO-650	34.8	47.2	73
Nano-ZnO-850	41.8	31.7	116

Table S1 TOF values of 4b on nano-ZnO-x normalized with acid sites.

Figure S1 Effect of LA/furfural mole ratio on furfural conversion and yield of **4a** in the aldol reaction of furfural and sodium levulinate on MgO. Reaction conditions: 4 mmol furfural, 3 mL H_2O , 0.1 g MgO, 85 °C, 1.5 h, and 1 atm Ar.

Figure S2 Conversion of furfural and yield of **4a** as a function of time in the aldol reaction of furfural and sodium levulinate on MgO. Reaction conditions: 6 mmol sodium levulinate, 4 mmol furfural, 3 mL H₂O, 0.1 g MgO, 85 °C, and 1 atm Ar.

Figure S3 Nitrogen adsorption and desorption isotherms curves of ZnO samples: (a) nano-ZnO-250, (b) nano-ZnO-450, (c) nano-ZnO-650, and (d) nano-ZnO-850, and (e) ZnO.

Figure S5 XRD patterns of nano- ZnO calcined at different temperatures.

Figure S6 Raman spectra of nano-ZnO calcined at different temperatures.

Figure S7 Temperature-programmed desorption profile of H_2O on ZnO pretreated at (a) 450, and (b) 200 °C in flowing Ar.

re S8 In situ DRIFT spectra of chemisorbed acetone on nano- ZnO-450 with He purging.

Figure S9 1H NMR spectra of 4b with CDCl₃ as solvent at room temperature.

Figure S10 GC-MS spectra of 4b.

Figure S11 GC-MS spectra of 4a.