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1. General Information

'H NMR spectra are recorded on JNM-LA300FT-NMR (300 MHz, 400 MHz)
spectrometers. 'H NMR spectra are reported as follows: chemical shift in ppm (0)
relative to the chemical shifts of CDCIl; at 7.26 ppm and CD;OD at 3.33 ppm,
integration, multiplicities (s = singlet, d = doublet, t = triplet, ¢ = quartet, m =
multiplet and br = broadened), and coupling constants (Hz). Analytical thin-layer
chromatography (TLC) was performed on 0.2 mm precoated plate Kieselgel 60 F254
(Merck).

2. Mechanism study for the reduction of nitroarenes

0.5 mmol p-nitrchlorobenzene (40 mg) was moved into a reactor together with 2
mg NG-1 and 1 ml water at room temperature. The mixture was stirred for 1-2 min
for thoroughly mixing. 5 equiv. of NaBH, (1.25 mmol/mL) 2mL was added dropwise
into the above solution under magnetic stirring at room temperature. After reacting for
0.5 hour, the sample was dissolved in ethyl acetate and analyzed by GC-MS. The
initial temperature of the column was 70 °C held for 1 min and was programmed to
300 °C at 15 °C/min, then held for 15 min at 300 °C, the sample injection volume was
2 pL. Helium was used as carrier gas at a flow rate of 1.1 mL/min on split mode
(1:50).

3. Computational details

All the electronic structure and energy calculations were carried out by the spin-
polarized density functional theory (DFT) using the Vienna ab initio simulation
package (VASP).!* PAW potentials were used to describe ion cores and valence
electrons interactions.>® The adopted exchange-correlation functional is the
generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof.” A
kinetic energy cut off of 350 eV was used with a plane-wave basis set. The integration
of the Brillouin zone was conducted using a 5x5x1 Monkhorst-Pack grid.® All atoms
were fully relaxed and optimized until the force was converged to 0.05 eV/A and the
total energy was converged to 1.0x10° eV/atom.

Four kinds of nitrogen doped graphene (NG), graphitic N, pyridinic N, pyrrolic N,
and pyridinic N oxidized, were established based on the 4 x 4 single layer graphene,
armchair and zigzag ribbons. The structures were designed according to previous
reference.” The periodical graphene slab 9.86 A x 8.60 A in size was used. The edge
graphene ribbon was prepared with the size of 20 A x 8.60 A. To avoid the image



interactions sufficiently large vacuum of 15.0 A has been taken along the z-axis.

The adsorption energy (E,qs) of nitrobenzene was defined as follows:

Eads = Esubstrate+nitrobenzene - Enitrobenzene - Esubstrate (1)
where Esubstrate+nitrobenzenea Enitrobenzenea and Esubstrate arc COITeSPOHding to the total
energies of a nitrobenzene molecule and four NG substrates, a gas phase nitrobenzene,
and an isolated substrate, respectively. A negative value indicates an exothermic

chemisorption.



4. The GC-MS spectra of reduction reaction intermediate products
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Fig. S1 The GC-MS spectra of reduction reaction intermediate products.



5. A proposed reaction mechanism for NG catalyze reduction of nitroarene
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Fig. S2 Schematic of the proposed reaction pathway for nitroarenes reduction

6. Spectroscopic data of the products:

Aniline hydrochloride (Table 3, entry 1)'°

'H NMR (400 MHz, CD;0D) 6 7.57-7.52 (m, 3H), 7.44 (d, J = 8.8 Hz, 2H).

4-Chloroaniline (Table 3, entry 2)!!

CIONHZ

'H NMR (400 MHz, CDCl3) 6 7.10 (d, J = 8.4 Hz, 2H), 6.33 (d, /= 8.4 Hz, 2H), 3.66
(s, 2H).

4-Bromoaniline hydrochloride (Table 3, entry 3)!°



Br@*NHgHCI

'H NMR (300 MHz, CD;0D) 6 7.74 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H).

4-Iodoaniline hydrochloride (Table 3, entry 4)'°

|©—NH2-HC|

'H NMR (300 MHz, CD;0D) 6 7.91 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 8.7 Hz, 2H).

4-Methylaniline hydrochloride (Table 3, entry 5)

chO—NHZ-HC|

'H NMR (300 MHz, CD;OD) & 7.38 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H),
2.41 (s, 3H).

4-Nitroaniline (Table 3, entry 6)'!

HzN@NHZ

'H NMR (400 MHz, CDCls) § 6.57 (s, 4H), 3.31 (s, 4H).

4-Aminophenol hydrochloride (Table 3, entry 7)

HO‘@*NH;HCI

'H NMR (300 MHz, CD;0D) 6 7.24 (d, 2H), 6.92 (d, J = 8.7 Hz, 2H).

4-Methoxyaniline hydrochloride (Table 3, entry 8)

H3CO@NH2-HCI

'H NMR (300 MHz, CD;OD) & 7.38 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H),
3.79 (s, 3H).

4-Amino-benzoic acid hydrochloride (Table 3, entry 9)



HOOC@—NHZ-HQ

'H NMR (300 MHz, CD;0D) 6 8.16 (d, J = 8.7 Hz, 2H), 7.48 (m, J = 8.7 Hz, 2H).

4-Aminobenzonitrile (Table 3, entry 10)

NEC@—NHQ-HG

'H NMR (400 MHz, CD;0D) 6 7.76 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.8 Hz, 2H).
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3. 'H NMR charts of the products:

Aniline hydrochloride (Table 3, entry 1):
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4-Chloroaniline (Table 3, entry 2):
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