

Electronic Supplementary Information

A bio-facilitated synthetic route for nano-structured complex electrode materials

Maryam Moradi,^{*abc*} Jae Chul Kim,^{*tad*} Jifa Qi,^{*tabc*} Kang Xu,^{*e*} Xin Li,^{*a*} Gerbrand Ceder,^{*adf*} and Angela M. Belcher^{**abc*}

^a Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

E-Mail: <u>belcher@mit.edu</u>

^b David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 77 Massachusetts Ave., Cambridge, MA 02139, USA

^c Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

^d Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720

^e Power and Energy Division Sensor and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, USA

^f Department of Materials Science and Engineering, University of California, Berkeley, California 94720

⁺ J. C. Kim and J. Qi contributed equally

1. Raman spectroscopy

Figure S1: Raman spectra obtained from M13 virus-SWCNT complex on Si substrates (a) before and (b) after the mineralization. The spectra show the radial breathing modes (RBM), D-band, G-band confirming the presence of SWCNT in the material. TEM image of (c) M13-SWCNT complex (red arrow showing SWCNT on the virus), and the grown MnO_x on (d)&(e) M13 virus and (f) M13-SWCNT complex comparing the morphology of the material with and without SWCNT.

To check SWCNT in the material, Raman spectroscopy is performed with Horiba Jobin-Yvon HR 800. Figs. S1a and b show the Raman spectra of M13 virus-SWCNT after the complexation before and after biomineralization, respectively. In both cases, the radial breathing mode (RBM) peaks as well as the G and D peaks from SWCNT are observed. The Raman spectra of the bio-mineralized seed material agrees with that of a manganese (III) oxide (Mn_2O_3). HRTEM image of M13-SWCNT in Fig. S1 a and b show that SWCNT does not alter the structure and morphology of LiMnBO3 particles. This is explained by the fact that the SWCNT are mainly covered by the grown active materials.

2. Electrochemical test:

Figure S2: TEM images obtained from (a) bio-templated, also shown in Fig. 1g, and (b) conventionally synthesized LiMnBO₃, (c) an SEM image of conventionally synthesized LiMnBO₃, and voltage *vs*. specific capacity profiles of bio-templated and conventionally synthesized LiMnBO₃ (d) without and (e) with conductive phase attachment at C/20.

TEM images of both compounds in Fig. S2a and b and the SEM image of conventionally prepared LiMnBO₃ in Fig. S2c show clear difference between two materials. The size of the conventional LiMnBO₃ particle ranges from 50 to 300 nm. Voltage profiles of LiMnBO₃ synthesized by bio-templated technique and (conventional) solid-state method are plotted as a function of specific capacity at a C/20 rate in Fig. S2. The discharge capacity of the bio-templated LiMnBO₃ cathode is 125 mAh g⁻¹, as shown in Fig. S2a, which is almost four times larger than that of conventional LiMnBO₃ without carbon coating. This result clearly shows how nanosizing affects the battery performance in LiMnBO₃. In Fig. S2b, SWCNT incorporated bio-templated LiMnBO₃ outperforms carbon coated conventional LiMnBO₃.