Supporting Information

Lipase catalyzed synthesis of fluorescent glycolipids: Gelation studies

and graphene incorporated self-assembled sheet formation for

semiconductor applications.

Kumarasamy Muthusamy,^a Vellaisamy Sridharan,^a C Uma Maheswari^a and Subbiah Nagarajan^{*a}

Contents

1.	Table S1. Optimization of Novozyme 435 [®] catalysed transesterification	
	reaction of sugar derivative with vinylester of fatty acid.	3
2.	Figure S1. Transesterification of compound 2 and vinyl deaconate	
	under optimized condition. (a) ¹ H NMR spectra of D-glucopyranose	
	dissolved in $D_2O^{[1]}$; (b) ¹ H NMR Spectra of pure compound 3d dissolved	
	in CDCl ₃ -DMSO-d ₆ mixture and (c) ¹ H NMR spectra of crude	
	compound 3d dissolved in CDCl ₃ .	4
3.	Figure S2. Transesterification of compound 1 and vinyl deaconate	
	under optimized condition. (a) ¹ H NMR Spectra of D-glucopyranose	
	dissolved in $D_2O^{[1]}$; (b) ¹ H NMR Spectra of crude SFAE 1 dissolved	
	in CDCl ₃ and (c) ¹ H NMR Spectra of pure SFAE 1 dissolved in $CDCl_3$	5
4.	Table S2. Solvents/vegetable oils used for gelation studies	6
5.	Figure S3. Optical microscopy image of SSG	7
6.	Figure S4. HRSEM image of SSG	8
7.	Figure S5. HRSEM image of GSSG	9
8.	Figure S6. Gel images of (a) SSG and GSSG .	9
9.	Figure S7. SAXD pattern of Xerogel of SSG obtained from cyclohexane.	10
10.	Figure S8. DSC-TGA analysis of GSSG	10
11.	Figure S9. ¹ H NMR spectrum of compound 3a	11
12.	Figure S10. ¹³ C NMR spectrum of compound 3a	12
13.	Figure S11. ¹ H NMR spectrum of compound 3b	13
14.	Figure S12. ¹³ C NMR spectrum of compound 3b	14
15.	Figure S13. ¹ H NMR spectrum of compound 3c	15

16. Figure S14. ¹³ C NMR spectrum of compound 3c	16
17. Figure S15. ¹ H NMR spectrum of compound 3d	17
18. Figure S16. ¹³ C NMR spectrum of compound 3d	18
19. Figure S17. ¹ H NMR spectrum of compound 3e	19
20. Figure S18. ¹³ C NMR spectrum of compound 3e	20
21. Figure S19. ¹ H NMR spectrum of compound 3f	21
22. Figure S20. ¹³ C NMR spectrum of compound 3f	22
23. Figure S21. ¹ H NMR spectrum of compound 3g	23
24. Figure S22. ¹³ C NMR spectrum of compound 3g	24
25. Figure S23. Angular frequency dependence of G' and G'' of linseed oil.	25

 Table 1. Optimization of Novozyme 435[®] catalyzed transesterification reaction of sugar derivative with vinylester of fatty acid.

	он	\sim					
но НО-		zymatic method"	но				
	OH 0 Vin	yl decanoate,	Ноон				
	2		3d				
S. #	Solvent/s	Temperature (°C)	Time (h)	Yield obtained (%)			
1	Acetone	40	24	24			
2	Isopropyl alcohol	40	24	trace			
3	2-Butanol	40	24	trace			
4	DMSO	40	24	trace			
5	DMF	40	24	trace			
6	Acetonitrile	40	24	trace			
7	DMSO-acetone (1:1)	40	24	47			
8	DMSO-isopropylalcohol	40	24	34			
9	DMSO-2-butanol	40	24	33			
10	DMSO-acetonitrile	40	24	22			
11	Aqueous DMSO	40	24	trace			
12	DMF-acetone (1:3)	40	24	23			
13	DMSO-acetone (1:2)	40	24	55			
14	DMSO-acetone (1:3)	40	24	58			
15	DMSO-acetone (1:3)	45	24	62			
16	DMSO-acetone (1:3):	50	24	65			
17	DMSO-acetone (1:3)	60	24	37			
18	DMSO-acetone (1:3)	50	36	75			
19	DMSO-acetone (1:3)	50	48	87			
20	DMSO-acetone (1:3)	50	60	65			
[a] A	nhydrous DMSO and DMF w	as used for optimizat	tion studies				

Figure S1 - Transesterification of compound 2 and vinyl deaconate under optimized condition. (a) ¹H NMR spectra of D-glucopyranose dissolved in $D_2O^{[1]}$; (b) ¹H NMR Spectra of pure compound **3d** dissolved in CDCl₃-DMSO-d₆ mixture and (c) ¹H NMR spectra of crude compound **3d** dissolved in CDCl₃.

Reference 1. R. G. Griffin and T. F. Prisner, Phys. Chem. Chem. Phys., 2010, 12, 5737.

Figure S2 - Transesterification of compound 1 and vinyl deaconate under optimized condition. (a) ¹H NMR Spectra of D-glucopyranose dissolved in $D_2O^{[1]}$; (b) ¹H NMR Spectra of crude SFAE 1 dissolved in CDCl₃ and (c) ¹H NMR Spectra of pure SFAE 1 dissolved in CDCl₃

References

1. R. G. Griffin and T. F. Prisner, Phys. Chem. Chem. Phys., 2010, 12, 5737.

S.	Solvent/vegetabl	Observation (CGC % wt/v) [#]						
No	e oils	3 a	3b	3c	3d	3 e	3f	3g
1	Ethanol	S	S	S	S	Р	Р	Р
2	n-Butanol	S	S	S	Р	Р	Р	Р
3	Octanol	Р	S	S	Р	Р	Р	Р
4	Decanol	Р	Р	Р	Р	Р	Р	Р
6	Dodecanol	Р	Р	Р	Р	Р	Р	Р
7	Toluene	S	PG	G (3.0)	PG	S	S	S
8	Benzene	PG	PG	G (3.0)	PG	S	S	S
9	1,2- Dichlorobenzene	PG	PG	G (2.5)	PG	PG	S	S
10	Chloroform	S	S	S	Р	Р	Р	Р
11	Hazelnut oil	PG	G (2.0)	G (1.7)	G(2.0)	Р	Р	р
12	Olive oil	PG	G (2.0)	G (1.5)	G (2.0)	Р	Р	Р
13	Heavy paraffin oil	PG	G (1.0)	G (0.7)	G (1.0)	G (2.0)	Р	Р
14	Light paraffin oil	PG	G (1.0)	G (0.7)	G (1.3)	G (2.0)	Р	Р
15	Sesame oil	PG	G (1.5)	G (1.5)	G (3.0)	Р	Р	Р
16	Linseed oil	PG	G (1.0)	G (0.3)	G (0.7)	G (1.5)	G (2.0)	Р
17	Water	Р	Р	Ι	Ι	I	Ι	Ι
18	DMSO+H ₂ O	Р	Р	Р	Р	Р	Р	Р

 Table S2. Solvents/vegetable oils used for gelation studies

19	DMF+H ₂ O	Р	Р	Р	Р	Р	Р	Р
20	Ethylacetate	Р	Р	Р	S	S	S	Р
21	Cyclohexane	Р	Р	Р	PG	G (0.5)	G (1.5)	G (2.5)

[#] S = solution; P = precipitate; I = insoluble; G = gel; PG = partial gel. Critical

Gelation Concentration (CGC) is presented in parenthesis [% (w/v)]

Figure S3. Optical microscopy image of SSG

Figure S4. FESEM images of polymer film obtained from SSG.

Figure S5. FESEM images of film obtained from GSSG

Figure S6. Gel images of (a) SSG, (b) GSSG prepared by mixing **3d** (0.3 % w/v) and graphene in the ratio of 1:0.5, (c) SSG under UV light and (d) GSSG prepared by mixing **3d** (1.5 % w/v) and graphene in the ratio of 1:1.

Figure S7. SAXD pattern of Xerogel of SSG obtained from cyclohexane.

Figure S8. DSC-TGA analysis of GSSG

Figure S15. ¹H NMR spectrum of compound 3d

Figure S19. ¹H NMR spectrum of compound 3f

Figure S21. ¹³C NMR spectrum of compound 3g

Point No.	Angular Frequency	Storage Modulus	Loss Modulus	Loss Factor	Strain	Shear Stress	Torque	Status
Nº	œ	G'	G''	tan(δ)	γ	τ	M	Stat
	[rad/s]	[Pa]	[Pa]	[1]	[%]	[Pa]	[mN-m]	
1	50	0.00010731	2.1463	20000.000	50.1	1.0748	0.0049464	ME-,taD,TruStrain™
2	31.5	6.1014E-05	1.2203	20000.000	50	0.60991	0.0028068	ME-,taD,TruStrain™
3	19.9	4.0939E-05	0.81877	20000.000	50	0.40931	0.0018836	ME-,taD,TruStrain™
4	12.6	2.6478E-05	0.52955	20000.000	50	0.26477	0.0012185	ME-,taD,TruStrain™
5	7.92	0.0021976	0.33782	153.725	50	0.16892	0.00077737	TruStrain™
6	5	1.0916E-05	0.21831	20000.000	50	0.10916	0.00050234	ME-,taD,TruStrain™
7	3.15	6.795E-06	0.1359	20000.000	50	0.067951	0.00031271	ME-,taD,TruStrain™
8	1.99	4.2925E-06	0.085849	20000.000	50	0.042925	0.00019754	ME-,taD,TruStrain™
9	1.26	2.7375E-06	0.05475	20000.000	50	0.027375	0.00012598	ME-,taD,TruStrain™
10	0.792	1.736E-06	0.03472	20000.000	50	0.01736	7.9889E-05	ME-,taD,TruStrain™
11	0.5	1.0872E-06	0.021744	20000.000	50	0.010872	5.0032E-05	ME-,taD,TruStrain™

Figure S23. Angular frequency dependence of G' and G'' of linseed oil.