A dual-walled cage MOF as an efficient heterogeneous catalyst for the conversion of CO_2 under mild and cocatalyst free conditions

Yun-Hu Han,^{a, b} Zhong-Yuan Zhou,^{a, c} Chong-Bin Tian^a and Shao-Wu Du^a*

^{*a*} State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

^b Graduate University of Chinese Academy of Sciences, Bejing 100039, P. R. China.

^c College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.

Fig. S2 The environment of the two crystallographic independent Zn^{2+} ions.

Fig. S3 The PXRD patterns of 1 recorded at different temperatures.

Fig. S5 The Gas sorption isotherm of 1 for N_2 measured at 77 K.

Fig. S6 The Gas sorption isotherms of 1 for CO_2 and N_2 measured at 273 K.

Fig. S7 The PXRD patterns of 1 after six runs for the cycloaddition of CO_2 with propylene oxide.

Fig. S8 Recycle reaction kinetics for the formation of propylene carbonate catalysed by 1 at 100°C and 1 atm (a) cycle 1, (b) cycle 2 and (c) after the reaction was performed for 3 hours, 1 was removed from the mixture and the reaction was continued for another 13 hours.

Entry	Catalyst	Co- Catalyst	Solv.	T (°C)	P (atm)	t (h)	Yield (%)	TON	Ref.
1	1	No	No	100	1	12	98.5	246.3	This work
2	MMCF-2 ^a	TBAB	No	R.T.	1	48	95.4	254.4	1
3	MMCF-9 ^b	TBAB	No	R.T.	1	48	87.4		2
4	BIT-103 ^c	No	No	160	30	24	95.2	230.2	3
5	BIT-102 ^c	No	No	160	30	24	89.4	216.2	3
6	BIT-101 ^c	No	No	160	30	24	84.7	174.9	3
7	$MOF-5^d$	TBAB	No	50	60	6	97.6	68.8	4
8	ZIF-8 ^e	No	No	80	7	4	43.7	18.1	5
9	ZIF-8-f ^e	No	No	80	7	4	73.1	32.3	5
10	CHB(M)	No	No	120	12	6	62		6
11	Co-CMP 100 ^g	TBAB	No	100	30	1	98.1	201	7
12	Mg-MOF- 74 ^h	No	chlorobe nzene	100	20	4	95	28.5	8
13	BIT- C^i	TBAB	No	60	4	10	95		9
14	MIL-101- N(n-Bu) ₃ Br ^j	No	No	80	20	8	99.1	110.1	10
15	MIL-101- P(n-Bu) ₃ Br ^j	No	No	80	20	8	98.6	109.6	10
16	Ni-TCPE1 ^k	TBAB	No	100	10	12	99	2000	11

 Table S1 Conversion of propylene epoxide into propylene carbonate with CO2 catalysed by different MOF-based systems

Reaction Conditions: ^{*a*} epoxide (25.0 mmol) with catalyst (0.125 mol% per paddlewheel units), nBu_4NBr (0.58 g); ^{*b*} epoxide (25 mmol) with MMPF-9 (0.03125 mmol), nBu_4NBr (0.58 g); ^{*c*} epoxides (20 mmol), BIT-103 (3.76 mmol); ^{*d*} epoxide 20 mmol with 2.5 mol% nBu_4NBr , 0.1 g MOF-5; ^{*e*} Catalytic performance of ZIF-8 and Functionalized ZIF-8 in the cycloaddition of CO₂ to epichlorohydrin Reaction, ZIF-8-f stands for functionalized ZIF-8; ^{*f*} 0.3 mmol CHB(M), 18.6 mmol epoxide; ^{*g*} propylene oxide (25mmol), Co-CMP (100mg, Co: 0.122mmol), TBAB (1.8 mmol); ^{*h*} substrate : catalyst = 30 : 1; ^{*i*} Epoxide 20 mmol, BIT-C 1 mol% (based on Cu²⁺), Bu₄NBr 5 mol% as the co-catalyst; ^{*j*} PO (30 mmol), catalyst (0.27 mmol); ^{*k*} epoxide (20 mmol), catalyst (10 µmol, based on Ni), and TBAB (0.3 mmol).

Compound	Compound 1			
Formula	$C_{150}H_{204}N_{42}O_{48}Zn_6$			
Fw	3755.79			
Cryst. Syst.	Cubic			
space group	Im-3			
<i>a</i> , Á	28.6573(3)			
a, °	90.00			
$V, \mathrm{\AA}^3$	23534.5 (4)			
Z	12			
μ , mm ⁻¹	0.670			
$D_{\rm calcd}, {\rm g \ cm^{-3}}$	1.060			
GOF	1.302			
^a R ₁	0.0726			
wR ₂	0.2349			

 Table S2 Crystallographic data and structure refinement details for compound 1

 $aR_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

References

- W. Y. Gao, Y. Chen, Y. H. Niu, K. Williams, L. Cash, P. J. Perez, L. Wojtas, J. F. Cai, Y. S. Chen, S. Q. Ma, *Angew. Chem. Int. Ed.*, 2014, **126**, 2653 –2657.
- 2. W. Y. Gao, L. Wojtas, S. Q. Ma, Chem. Commun., 2014, 50, 5316-5318.
- X. Q. Huang, Y. F. Chen, Z. G. Lin, X. Q. Ren, Y. N. Song, Z. Z. Xu, X. M. Dong,
 X. G. Li, C. W. Hu, B. Wang, *Chem. Commun.*, 2014, 50, 2624–2627.
- J. L. Song, Z. F. Zhang, S. Q. Hu, T. B. Wu, T. Jiang, B. X. Han, *Green Chem.*, 2009, 11, 1031–1036.
- C. M. Miralda, E. E. Macias, M. Q. Zhu, P. Ratnasamy, M. A. Carreon, ACS Catal., 2012, 2, 180–183.
- A. C. Kathalikkattil, D. W. Kim, J. Tharun, H. G. Soek, R. Roshan, D. W. Park, Green Chem., 2014, 16, 1607–1616.
- Y. Xie, T. T. Wang, X. H. Liu, K. Zou, W. Q. Deng, *Nat. Commun.*, 2013, 4, 1960–1966.
- D. A. Yang, H. Y. Cho, J. Kim, S. T. Yang, W. S. Ahn, *Energy Environ. Sci.*, 2012, 5, 6465–6473.
- B. Zou, L. Hao, L. Y. Fan, Z. M. Gao, S. L. Chen, H. Li, C. W. Hu, J. Catal., 2015, 329, 119–129.
- D. X. Ma, B. Y. Li, K. Liu, X. L. Zhang, W. J. Zou, Y. Q. Yang, G. H. Li, Z. Shi, S. H. Feng, *J. Mater. Chem. A*, 2015, 3, 23136–23142.
- Z. Zhou, C. He, J. H. Xiu, L. Yang, C. Y. Duan, J. Am. Chem. Soc., 2015, 137, 15066–15069.