Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for:

Development of GSK's NMR Guides – A tool to encourage the use of more sustainable solvents

Hugo E. Gottlieb, Grazyna Graczyk-Millbrandt, Graham G. A. Inglis, Abraham Nudelman, David Perez, Yanqiu Qian, Leanna E. Shuster, Helen F. Sneddon, and Richard J. Upton.

Table of Contents:

Section 1: Key to annotations in NMR data tables

Section 2: Compiled ¹H NMR chemical shifts, listed alphabetically by solvent

Section 3: Compiled ¹³C NMR chemical shifts, listed alphabetically by solvent

^a Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel

^b GSK, 709 Swedeland Road, King of Prussia, PA 19406, USA

^cGSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts., UK, SG1 2NY.

^d C2M Aurochs Industrie, 3 Impasse du lac, Z.I. de la Plaine, 31140 Aucamville, France

^e GSK, 1250 South Collegeville Road, Collegeville, PA 19426, USA. Fax: 610-917-7393; Tel: 610-917-4489; E-mail: leanna.e.shuster@gsk.com

Section 1:

Annotation	Explanation
*	This peak as recorded in this deuterated solvent appears with a different multiplicity than as indicated in the table. Some instances in D_2O or methanol- $d4$ are due to lack of coupling to H-bonded protons. In a few cases this results from overlap of analyte peaks with the solvent or water signals.
+	Multiple peaks are overlapping to form a multiplet that cannot be fully resolved
R	The analyte and deuterated solvents are reactive with each other
N/O	This peak was not observed in the given spectrum.
a	For the ${}^{1}H$ NMR spectrum of glycerol in acetone- d_6 , the shifts for all 6 carbon-bonded protons appear overlapped as a single, complex multiplet.
b	Peak assignments made on the basis of H-H COSY and HSQC 2D NMR spectra.
С	This peak is listed as a methylene group, but the two protons are non-equivalent, therefore this peak represents only a single proton.
d	Peak assignments made on the basis of H-H COSY, HSQC, HMQC, APT, and nOe 2D NMR spectra.
e	This peak represents 6 methylene protons from the cyclopentyl ring of CPME.
f	This peak represents 4 methylene protons from the cyclopentyl ring of CPME.
ъŊ	For dimethyl isosorbide in CD ₃ CN, one of the two protons which overlap in the other examined deuterated solvents to form the complex multiplet listed as " CH_2 C(OMe) + CH (OMe)" on this table instead overlaps with the CH ₂ O multiplet at 3.76-3.80 ppm. In CD ₃ CN only, the peak at 3.76-3.80 therefore represents 2H, while the peak at 3.80-3.84 ppm represents 1H.
	Solvent is classified as amber by the GSK Solvent Sustainability Guide
	Solvent is classified as green by the GSK Solvent Sustainability Guide

Note: For data taken from literature references, most peaks labeled as multiplets reported a single chemical shift value and are therefore not shown here as a range, while those determined for this work are reported as a range, encompassing the full width of the signal.

Table 1: Reference for all annotations and notes used in NMR chemical shift figures

Acetine acid (118°C)	Solvent (bp)				D_2O	(CD ₃) ₂ SO	$(CD_3)_2CO$	CD ₃ CN	CD ₃ OD	CDCl ₃
Aectonic (6°C') Aectonic (6°C') CHi, s 2.22 2.09 2.09 2.08 2.15 2.17 Aectonic (8°C') CHi, s 2.06 2.07 2.05 1.06 2.03 2.10 Aectonic (8°C') CHi, s 1.089 0.82 0.89 0.87 0.91 0.92 CHi, q 1.51 1.35 1.45 1.41 1.15 1.20 CHi, q 1.51 1.35 1.45 1.43 1.48 1.51 OH s N/O 4.02 3.06 2.25 N/O 1.25 Amyl methyl ether (85°C) Amyl methyl e	Acetic acid (118°C)		CH ₃	s	_					
Acetonitrile (82°C) FAmyl alcohol (102°C) CHj, t 1, 89 0,89 0,82 0,89 0,87 0,91 0,92 0,92 (CH ₃) ₂ s 1,19 1,05 1,13 1,11 1,15 1,20 CH ₃ q 1,51 1,35 1,45 1,43 1,48 1,51 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,4	` ′									
CAMPy alcohol (102°C)	, ,		9							
(CH) ₂ s 1.19 1.05 1.13 1.11 1.15 1.20 (CH) ₂ q 1.51 1.35 1.45 1.43 1.48 1.51 (CH) ₃ q 1.51 1.35 1.45 1.43 1.48 1.51 (CH) ₄ q 1.51 1.35 1.45 1.43 1.48 1.51 (CH) ₂ q 1.55 1.05 1.07 1.08 1.07 1.08 1.03 1.08 0.86 0.87 (CH) ₂ q 1.55 1.42 1.46 1.46 1.51 1.49 (CH) ₂ q 1.55 1.42 1.46 1.46 1.51 1.49 (CH) ₂ q 1.55 1.42 1.46 1.46 1.51 1.49 (CH) ₂ q 1.55 1.42 1.46 1.46 1.51 1.49 (CH) ₂ q 1.55 1.42 1.46 1.46 1.51 1.49 (CH) ₂ q 1.55 1.42 1.46 1.46 1.51 1.49 (CH) ₂ q 1.55 1.42 1.46 1.46 1.51 1.49 (CH) ₂ q 1.55 1.42 1.46 1.46 1.51 1.49 (CH) ₂ q 1.55 1.42 1.46 1.46 1.51 1.49 (CH) ₂ q 1.55 1.42 1.46 1.38 1.38 1.37 3.7 3.81 (CH) ₂ q 1.57 1.71 1.68 6.89-6.97 6.88-6.95 6.		00								
CH ₂			9							
OH										
PAmyl methyl ether (85°C)			_	-						
(CH ₃)C s 1.17 1.05 1.07 1.08 1.13 1.13 (CH ₃)C s 1.55 1.42 1.46 1.46 1.51 1.49 (CH ₆)C s 3.20 3.05 3.10 3.10 3.17 3.18 (CH ₆)C s 3.20 3.05 3.10 3.10 3.17 3.18 (CH ₆)C s 3.88 3.74 3.78 3.77 3.18 (CH ₆)C s 3.88 3.74 3.78 3.77 3.18 (CH ₆)C s 3.88 3.74 3.78 3.77 3.18 (CH ₆)C s 3.88 3.74 3.78 3.77 3.18 (CH ₆)C s 3.88 3.74 3.78 3.77 3.18 (CH ₆)C s 3.88 3.74 3.78 3.77 3.18 (CH ₆)C s 3.88 3.74 3.78 3.77 3.18 (CH ₆)C s 3.88 3.74 3.78 3.77 3.18 (CH ₆)C s 3.88 3.49 3.79 3.72 3.73 3.18 (CH ₆)C s 3.88 3.49 3.79 3.72 3.73 3.18 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19	t-Amyl methyl ether (85°C)									
Anisole (154°C) CH ₃ O S 3.20 3.05 3.10 3.10 3.17 3.18 Anisole (154°C) CH ₃ O S 3.20 3.05 3.10 3.10 3.10 3.17 3.18 3.17 3.18 3.17 3.18 3.77 3.77 3.70 3.81 3.70 3.71 3.81 3.72 3.73 3.73 3.74 3.75 3.74 3.75 3.74 3.75 3.75 3.76 3.75 3.76 3.75 3.76 3.76 3.75 3.76 3.77 3.70 3.76 3.77 3.70 3.76 3.77 3.77 3.76	Thing methy ether (65°C)		, <u>, , , , , , , , , , , , , , , , , , </u>							
Anisole (154°C) CH ₁₀ s 3.85 3.74 3.78 3.77 3.18 (1610°p) m 7.01-7.10 6.89-6.97 6.88-6.95 6.85-6.95 6.87-6.98 (1610°p) m 7.01-7.10 6.89-6.97 6.88-6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95										
Anisole (154°C)			_	-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Anisole (154°C)									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Allisoic (154 C)		5							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
CH ₄ (3) m 1,30-1,40 1,25-1,34 1,31-1,41 1,29-1,39 1,34-1,43 1,33-1,45 CH ₄ (2) m 1,49-1,56 1,35-1,43 1,44-1,52 1,42-1,49 1,47-1,55 1,52-1,59 CH ₄ (1) m 3,61 3,38 3,49-3,56 3,45-3,51 3,54 3,65 CH ₄ (1) d 1,08 0,88 0,91 0,93 CH ₄ (1) d 1,16 1,02 1,09 1,08 1,13 1,19 CH ₂ m 1,43-1,52 1,25-1,40 1,33-1,47 1,33-1,42 1,36-1,52 1,42-1,54 CH ₄ m 3,71-3,80 3,44-3,54 3,56-3,66 3,54-3,62 3,59-3,67 3,68-3,79 CH ₄ m 3,71-3,80 3,44-3,54 3,56-3,66 3,54-3,62 3,59-3,67 3,68-3,79 CH ₄ m 3,71-3,80 3,44-3,54 3,56-3,66 3,54-3,62 3,59-3,67 3,68-3,79 CH ₄ m 3,71-3,80 3,44-3,54 3,56-3,66 3,54-3,62 3,59-3,67 3,68-3,79 CH ₄ m 3,71-3,80 3,44-3,54 3,56-3,66 3,54-3,62 3,59-3,67 3,68-3,79 CH ₄ m 3,71-3,80 3,44-3,54 3,56-3,66 3,54-3,62 3,59-3,67 3,68-3,79 CH ₄ m 1,59-1,68 1,50-1,58 1,54-1,62 1,54-1,63 1,55-1,65 1,57-1,65 CH ₂ m 1,31-1,44 1,22 1,44 1,41 1,41 1,41 1,41 1,45 CH ₃ m 1,59-1,68 1,50-1,58 1,54-1,62 1,54-1,63 1,55-1,65 1,57-1,65 CH ₂ CH ₃	1 Protonol (1189C)									
CH ₁ (2) m 1,49-1,56 1,35-1,43 1,44-1,52 1,42-1,49 1,47-1,55 1,52-1,59 OH t	1-Butanor (118 C)									
OH CH ₄ (1) m 3.61 3.38 3.49-3.56 3.45-3.51 3.54 3.65 CH ₃ (4) t 0.89 0.83 0.89 0.88 0.91 0.93 CH ₃ (4) t 1.6 1.02 1.09 1.08 1.13 1.19 CH ₃ (4) t 1.6 1.10 1.02 1.09 1.08 1.13 1.19 CH ₃ (4) t 1.6 1.10 1.20 1.09 1.08 1.13 1.19 CH ₃ (4) t 1.10 1.20 1.09 1.08 1.13 1.19 CH ₃ (4) t 1.10 1.20 1.09 1.08 1.13 1.19 1.19 CH ₃ (4) t 1.10 1.20 1.09 1.08 1.13 1.19 1.19 CH ₃ (4) t 1.10 1.20 1.09 1.08 1.13 1.19 1.19 CH ₃ (4) t 1.10 1.20 1.09 1.08 1.13 1.19 1.19 1.10 CH ₃ (4) t 1.10 1.18 1.19 1.19 1.19 1.19 1.19 1.19 1.19										
2-Butanol (100°C)										
2-Butanol (100°C)										
CH ₃ (1) d 1.16 1.02 1.09 1.08 1.13 1.19 CH ₂ m 1.43-1.52 1.25-1.40 1.33-1.47 1.33-1.42 1.36-1.52 1.42-1.54 OH	2 P (1(1000C)	~ ~								
CH2 m 1.43-1.52 1.25-1.40 1.33-1.47 1.33-1.42 1.36-1.52 1.42-1.56 CH2 m 3.71-3.80 3.44-3.54 3.56-3.66 3.54-3.62 3.59-3.67 3.68-3.79 c/Butanol (82°C)	2-Butanol (100°C)		5							
OH CH CH m 3.71-3.80 3.44-3.24 3.56-3.66 3.54-3.62 3.59-3.67 3.68-3.79 I-Butanol (82°C)										
CH m 3.71-3.80 3.44-3.54 3.56-3.66 3.54-3.62 3.59-3.67 3.68-3.79 P-Butanol (82°C)			_		1.43-1.52				1.36-1.52	
### CHatanol (82°C) OH				d						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				m						
$n-\text{Butyl acetate (126°C)} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t-Butanol (82°C)			S	1.24		1.18		1.40	1.28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				S						
CH2 m 1.59-1.68 1.50-1.58 1.54-1.62 1.54-1.63 1.55-1.65 1.57-1.65 CH3CO s 2.09 1.99 1.97 1.97 2.01 2.04 CH2CO t 4.12 3.99 4.02 4.02 4.06 4.07 (H3CO) s 1.46 1.39 1.41 1.42 1.44 1.45 (CH3)3C s 2.02 1.91 1.89 1.90 1.93 1.96 (H3CO) (CH3)3C s 2.02 1.91 1.89 1.90 1.93 1.96 (H3CO) (CH3)3C s 2.02 1.91 1.89 1.90 1.93 1.96 (H3CO) (CH3)3C s 1.23 1.12 1.14 1.14 1.14 1.19 1.20 (CH3)3C s 1.23 1.12 1.14 1.14 1.14 1.19 1.20 (CH3)3C s 1.23 1.12 1.14 1.14 1.15 1.19 1.20 (CH3)3C s 1.21 1.11 1.13 1.14 1.15 1.19 1.20 (CH3)3C S 1.22 1.21 1.11 1.13 1.14 1.15 1.19 1.20 (CH3)3C S 1.22 1.21 1.11 1.13 1.14 1.15 1.19 (CH3)3C S 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.	<i>n</i> -Butyl acetate (126°C)			t	0.91	0.89	0.92	0.92	0.94	0.94
CH3CO s 2.09 1.99 1.97 1.97 2.01 2.04 CH2CO t 4.12 3.99 4.02 4.02 4.06 4.07 t-Butyl acetate (95°C)			_	m	1.31-1.43	1.27-1.37	1.32-1.43	1.31-1.42	1.33-1.45	1.34-1.43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	m	1.59-1.68					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH ₃ CO	S						
$(CH_3)_3C \qquad s \qquad 2.02 \qquad 1.91 \qquad 1.89 \qquad 1.90 \qquad 1.93 \qquad 1.96$ $CH_3CH_2 \qquad t \qquad 1.15 \qquad 1.04 \qquad 1.06 \qquad 1.07 \qquad 1.13 \qquad 1.16$ $CCH_3 \qquad s \qquad 1.23 \qquad 1.12 \qquad 1.14 \qquad 1.14 \qquad 1.19 \qquad 1.20$ $CH_2 \qquad q \qquad 3.54 \qquad 3.32 \qquad 3.37 \qquad 3.38 \qquad 3.45 \qquad 3.41$ $t\text{-Butyl methyl ether (55°C)} \qquad CCH_3 \qquad s \qquad 1.21 \qquad 1.11 \qquad 1.13 \qquad 1.14 \qquad 1.15 \qquad 1.19$ $OCH_3 \qquad s \qquad 3.22 \qquad 3.08 \qquad 3.13 \qquad 3.13 \qquad 3.20 \qquad 3.22$ $Butylene carbonate (250°C) \qquad CH_3 \qquad t \qquad 0.98 \qquad 0.91 \qquad 0.99 \qquad 0.96 \qquad R \qquad 1.04$ $CH_2CH_3 \qquad m \qquad 1.74-1.88 \qquad 1.70* \qquad 1.80 \qquad 1.67-1.81 \qquad \qquad 1.71-1.88$ $CH_2O^1 \qquad dd \qquad 4.28 \qquad 4.14 \qquad 4.17 \qquad 4.08 \qquad \qquad 4.09$ $CH_2O^1 \qquad t \qquad 4.67 \qquad 4.55 \qquad 4.61 \qquad 4.51 \qquad \qquad 4.53$ $CHO \qquad m \qquad 4.85-4.92 \qquad 4.74 \qquad 4.73-4.80 \qquad 4.64-4.71 \qquad \qquad 4.60*$ $Chloroform (61°C) \qquad CH \qquad s \qquad insoluble \qquad 8.32 \qquad 8.02 \qquad 7.58 \qquad 7.90 \qquad 7.26$ $C_1A_3(m) \qquad s \qquad 2.39 \qquad 2.36 \qquad 2.37 \qquad 2.38 \qquad 2.43 \qquad 2.47$ $CH_3(m) \qquad s \qquad 2.39 \qquad 2.36 \qquad 2.37 \qquad 2.38 \qquad 2.43 \qquad 2.47$ $CH_2 \qquad s \qquad insoluble \qquad 1.40 \qquad 1.43 \qquad 1.44 \qquad 1.45 \qquad 1.43$ $Cyclohexanone (155°C) \qquad CH_2(4) \qquad m \qquad 1.69-1.76 \qquad 1.61-1.68 \qquad 1.69-1.75 \qquad 1.66-1.73 \qquad R \qquad 1.69-1.76$ $CH_2(3) \qquad m \qquad 1.83-1.91 \qquad 1.73-1.79 \qquad 1.78-1.85 \qquad 1.78-1.85 \qquad \qquad 1.83-1.90$ $CH_2CO \qquad t \qquad 2.39 \qquad 2.25 \qquad 2.27 \qquad 2.27 \qquad \qquad 2.34$ $Cyclohexanone (155°C) \qquad CH_2 \qquad m \qquad 1.69-1.76 \qquad 1.61-1.68 \qquad 1.69-1.75 \qquad 1.66-1.73 \qquad R \qquad 1.69-1.76$ $CH_2 \qquad m \qquad 1.74-1.85 \qquad 1.591-1.591 \qquad 1.75-1.71 \qquad 1.55-1.64^{\sharp} \qquad 1.60-1.68 \qquad 1.60-1.75$ $CH_2 \qquad m \qquad 1.74-1.85 \qquad 1.591-1.591 \qquad 1.55-1.71 \qquad 1.55-1.64^{\sharp} \qquad 1.60-1.68 \qquad 1.60-1.75$ $CH_2 \qquad m \qquad 1.74-1.85 \qquad 1.591-1.591 \qquad 1.55-1.71 \qquad 1.55-1.64^{\sharp} \qquad 1.60-1.68 \qquad 1.60-1.75$ $CH_2 \qquad m \qquad 1.74-1.85 \qquad 1.591-1.591 \qquad 1.55-1.71 \qquad 1.55-1.64^{\sharp} \qquad 1.60-1.68 \qquad 1.60-1.75$ $CH_2 \qquad m \qquad 1.74-1.85 \qquad 1.591-1.591 \qquad 1.55-1.71 \qquad 1.55-1.64^{\sharp} \qquad 1.60-1.68 \qquad 1.60-1.75$ $CH_2 \qquad m \qquad 1.74-1.85 \qquad 1.591-1.591 \qquad 1.55-1.71 \qquad 1.55-1.64^{\sharp} \qquad 1.60-1.68 \qquad 1.60-1.75$ $CH_2 \qquad m \qquad 1.74-1.85 \qquad 1.591-1.591 \qquad 1.55-1.71 \qquad 1.55-1.64^{\sharp} \qquad 1.60-1.68 \qquad 1.60-1.75$ $CH_2 \qquad m \qquad 1.74-1.85 \qquad 1.591-1.67 \qquad \qquad 1.64+1.73 \qquad 1.69-1.76 \qquad \qquad 1.591-1.67 \qquad \qquad 1.64+1.73 \qquad 1.69-1.76 \qquad \qquad 1.64+1.73 \qquad 1.69-1.76 \qquad \qquad 1.64+1$			CH ₂ CO	t	4.12	3.99	4.02	4.02	4.06	4.07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>t</i> -Butyl acetate (95°C)		CH ₃ CO	S	1.46	1.39	1.41	1.42	1.44	1.45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$(CH_3)_3C$	S	2.02	1.91	1.89	1.90	1.93	1.96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>t</i> -Butyl ethyl ether (70°C)		CH_3CH_2	t	1.15	1.04	1.06	1.07	1.13	1.16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CCH ₃	S	1.23	1.12	1.14	1.14	1.19	1.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH ₂	q	3.54	3.32	3.37	3.38	3.45	3.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>t</i> -Butyl methyl ether (55°C)			S	1.21	1.11	1.13	1.14	1.15	1.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			OCH ₃	S	3.22	3.08	3.13	3.13	3.20	3.22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Butylene carbonate (250°C)			t	0.98			0.96	R	1.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	ĺ		m						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
Chloroform (61°C)			_							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloroform (61°C)									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,1,0 comaine (171 c)									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			9							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cyclohevane (81°C)									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_							
Cyclopentyl methyl ether (106°C) $\stackrel{\frown}{}$ CH $_2$ CO t 2.39 2.25 2.27 2.27 2.34 Cyclopentyl methyl ether (106°C) $\stackrel{\frown}{}$ M 1.52-1.68° 1.41-1.51 1.44-1.54 1.45-1.55 1.47-1.59 1.47-1.57 CH $_2$ M 1.74-1.85 1.51-1.59° 1.55-1.71° 1.55-1.64° 1.60-1.68° 1.60-1.75° CH $_2$ M 1.59-1.67 1.64-1.73 1.69-1.76 CH $_3$ S 3.30 3.15 3.19 3.20 3.26 3.28	Cyclonexalione (155 C)									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cyclopentyl mathyl other (1069C)									
CH ₂ m 1.59-1.67 1.64-1.73 1.69-1.76 CH ₃ s 3.30 3.15 3.19 3.20 3.26 3.28	Cyclopentyl methyl etner (106°C)		_							
CH ₃ s 3.30 3.15 3.19 3.20 3.26 3.28			_							
J. Control of the con			_							
CH m 3.94-3.99 3.69-3.77 3.72-3.77 3.73-3.80 3.80-3.86 3.77-3.82										
			CH	m	3.94-3.99	3.69-3.77	3.72-3.77	3.73-3.80	3.80-3.86	3.77-3.82

Solvent (bp)			D ₂ O	(CD ₃) ₂ SO	(CD ₃),CO	CD ₃ CN	CD ₃ OD	CDCl ₃
<i>p</i> -Cymene ^b (177°C)	CH₃CH	d	insoluble	1.17	1.20	1.20	1.21	1.23
	CH ₃ Ar	S		2.25	2.27	2.28	2.27	2.32
	CH(CH ₃) ₂	spt		2.83	2.85	2.85	2.83	2.87
	ArCH	m		7.05-7.15	7.06-7.13	7.06-7.15	7.02-7.10	7.11
1,2-Dichloroethane (84°C)	CH ₂	S	insoluble	3.90	3.87	3.81	3.78	3.73
Dichloromethane (40°C)	CH ₂	S	insoluble	5.76	5.63	5.44	5.49	5.30
Diethyl carbonate (127°C)	-	t	1.28	1.20	1.24	1.24	1.26	1.31
•	CH ₂	q	4.21	4.10	4.13	4.12	4.14	4.19
Diethyl ether (35°C)	CH ₃	t	1.17	1.09	1.11	1.12	1.18	1.21
• ` '	CH ₂	q	3.56	3.38	3.41	3.42	3.49	3.48
Diethyl succinate (218°C)	CH ₃	t	1.26	1.17	1.21	1.21	1.24	1.26
•	CH ₂ O	S	2.69	2.53	2.57	2.54	2.59	2.62
	CH_2 CH_2	q	4.18	4.05	4.09	4.09	4.12	4.15
Diglyme (162°C)	OCH ₃	S	3.37	3.24	3.28	3.29	3.35	3.39
	CH ₂	m	3.61	3.38	3.47	3.45	3.58	3.57
	CH ₂	m	3.67	3.51	3.56	3.53	3.61	3.65
1,2-Dimethoxyethane (85°C)	CH ₃	S	3.37	3.24	3.28	3.28	3.35	3.40
-, ()	CH ₂	S	3.60	3.43	3.46	3.45	3.52	3.55
Dimethyl carbonate (90°C)		S	3.80	3.69	3.72	3.72	3.74	3.79
Dimethyl isosorbide ^d (94°C)		S	3.42	3.26	3.31	3.31	3.36	3.38
	CH ₃	S	3.45	3.31	3.37	3.36	3.42	3.47
	CH ₂ C(OMe) ^c		3.53-3.58	3.37-3.42	3.44-3.49	3.41-3.46	3.49-3.54	
	CH ₂ O ^c	m	3.86-3.91	3.69-3.75	3.76-3.83	3.76-3.80fg		3.87*
	CH_2 C(OMe) ^c + CH (OMe)		4.00-4.09	3.76-3.81	3.76-3.83	3.80-3.84g		
	CH_2O^c	***	1.00 1.07	3.83	3.86	3.00 3.01-	3.91	4.52
	CH(OMe)	m	4.13-4.19	3.84-3.89	3.88-3.91	3.84-3.91	3.93-3.99	
	CH (junction)	d	4.67	4.42	4.43	4.43	4.49	3.90-4.02
	CH (junction)	m	4.78	4.53-4.57	4.57-4.61	4.54-4.58		3.90-4.02
	CH (junction)	m	4.78	4.53-4.57	4.57-4.61	4.54-4.58		3.90-4.02
Dimethylacetamide (165°C)	CH ₃ CO	S	2.08	1.96	1.97	1.97	2.07	2.09
Emethylacetamiae (105°C)	NCH ₃	S	2.90	2.78	2.83	2.83	2.92	2.94
	NCH ₃	S	3.06	2.94	3.00	2.96	3.31	3.02
Dimethylformamide (153°C)	CH ₃	S	2.86	2.73	2.78	2.77	2.85	2.88
Binethynormannae (133°C)	CH ₃	S	3.00	2.89	2.94	2.89	3.01	2.96
	CH ₃	S	7.91	7.95	7.96	7.92	7.92	8.02
Dimethyl sulfoxide (189°C)	4	S	2.71	2.54	2.52	2.50	2.65	2.62
Dimethylimidazolidinone (225°C)		S	2.74	2.63	2.68	2.67	2.74	2.78
Difficulty influence (223 C)	CH ₂	S	3.37	3.20	3.23	3.21	3.31	3.27
1,4-Dioxane (102°C)	CH ₂	S	3.75	3.57	3.59	3.60	3.66	3.71
1,3-Dioxolane (75°C)		S	3.93	3.77	3.80	3.80	3.83	3.88
1,5-Dioxolatic (75°C)	CH ₂ CH ₂	S	4.90	4.78	4.79	4.80	4.83	4.91
Ethanol (78°C)		t	1.17	1.06	1.12	1.12	1.19	1.25
Ethanor (70°C)	CH ₂		3.65	3.44	3.57	3.54	3.60	3.72
	OH	q s	N/O	4.63	3.39	2.47	N/O	1.32
Ethyl acetate (77°C)			1.24	1.17	1.20	1.20	1.24	1.32
Ethyl acctate (77 C)	3 4	t		1.17				
	CH ₃ CO CH ₂	S	2.07 4.14	4.03	1.97 4.05	1.97 4.06	2.01 4.09	2.05 4.12
Ethyl lactate ^b (154°C)		q t	1.28		1.23			1.30
Emyriaciaic (154 C)	32			1.19		1.24	1.27	
	<i>CH</i> ₃CH	d	1.41 N/O	1.24	1.32	1.31	1.36	1.42
	OH	d	N/O	5.33	4.07	3.28	N/O	2.81
	CH ₂	m	4.23*	4.04-4.16	4.11-4.17	4.09-4.22	4.18*	4.20-4.31
	СН	m	4.39*	4.04-4.16	4.17-4.24	4.09-4.22	4.21-4.25	4.20-4.31

Solvent (bp)				D_2O	(CD ₃),SO	(CD ₃) ₂ CO	CD ₃ CN	CD ₃ OD	CDCl ₃
Ethyl propionate ^b (99°C)		CH₃CH₂CO	t	1.10	1.02	1.07	1.07	1.10	1.14
		CH ₃ CH ₂ O	t	1.26	1.18	1.20	1.20	1.24	1.26
		CH ₂ CO	q	2.39	2.29	2.28	2.28	2.31	2.32
		CH ₂ O	q	4.16	4.05	4.07	4.07	4.11	4.13
Ethylene carbonate (248°C)		CH ₂	S	4.62	4.48	4.57	4.45	R	4.53
Ethylene glycol (197°C)		CH	S	3.65	3.34	3.28	3.51	3.59	3.76
Formic acid (101°C)		Н	S	8.22	8.18	8.11	8.03	8.08	8.02
Furfural ^b (162°C)		<i>СН</i> СНО	dd	6.77	6.79	6.74	6.67	6.70	6.61
1 11111111 (102 0)	<i>P P</i>	CHC(CHO)	d	7.58	7.55	7.43	7.36	7.42	7.26
		CH <i>CH</i> O	S	7.92*	8.11	7.94	7.81	7.88	7.70
		C-CHO	S	9.50	9.62	9.67	9.60	9.60	9.67
Glycerol (290°C) ^a		CH ₂	m	3.52-3.59	3.25-3.31	3.47-3.61		3.48-3.54	insoluble
Glyceror (250°C)		CH ₂	m	3.62-3.68	3.33-3.39	3.47-3.61	3.46-3.53		
		CH ₂	m	3.75-3.82	3.43	3.47-3.61		3.62-3.68	
		OH(1)	t	N/O	4.37	3.47-3.61	2.69	N/O	
		OH(1) OH(2)	d	N/O	4.44	3.64	2.93	N/O	
Glycerol diacetate (190°C)				2.12	2.02	2.01	2.93	R	2.09
Glyceror diacetate (190 C)		CH ₃	S	4.34	4.19	4.24	4.21		
Glycerol triacetate ^b (259°C)	00	CH ₂	S	2.12		2.02	2.01	R	4.27 2.08
Glycerof triacetates (239 C)		CH ₃	S		2.02				
		CH ₃	S	2.14	2.03	2.03	2.02		2.09
		CH ₂	dd	4.31	4.13	4.17	4.14		4.16
		CH ₂	dd	4.37	4.22	4.29	4.22		4.30
II ((000C)		СН	tt	5.32	5.15	5.22	5.19		5.22-5.28*
<i>n</i> -Heptane (98°C)		CH ₃	t	insoluble	0.86	0.88	0.89	0.90	0.89
H (600C)		CH ₂	m	-	1.26	1.21-1.35	1.21-1.35	1.31	1.28
<i>n</i> -Hexane (69°C)		CH ₃	t	insoluble	0.86	0.88	0.89	0.90	0.88
1 11 1 (15(00)	~ ~	CH ₂	m	-	1.25	1.28	1.28	1.29	1.26
1-Hexanol (156°C)		CH ₃	t	0.88	0.86	0.88	0.89	0.87-0.94	0.86-0.93
		CH ₂ (3-5)	m	1.24-1.39	1.19-1.32	1.24-1.39	1.22-1.38	1.26-1.40	1.24-1.44
		CH ₂ (2)	m	1.50-1.59	1.36-1.44	1.45-1.55	1.43-1.51		1.52-1.61
		CH ₂ (1)	m	3.60	3.35-3.40	3.37	3.44-3.50	3.53	3.64
		ОН	m	N/O	4.31	3.49-3.56	2.43	N/O	1.24-1.44
Isoamyl acetate (142°C)		$(CH_3)_2$	d	0.91	0.88	0.91	0.91	0.93	0.92
		CH₂CH	m	1.55	1.46	1.50	1.49	1.52	1.52
		СН	m	1.69	1.64	1.69	1.69	1.67	1.64-1.74
		CH ₃ CO	S	2.09	1.99	1.97	1.97	2.01	2.04
		CH ₂ O	t	4.15	4.02	4.06	4.05	4.09	4.09
Isoamyl alcohol (131°C)		CH ₃	d	0.90	0.85	0.89	0.89	0.91	0.92
		CH₂CH	m	1.44	1.31	1.39	1.37	1.42	1.47
		CH	m	1.61-1.71	1.65	1.72	1.67	1.64-1.77	1.66-1.78
		CH_2 OH	td	3.64*	3.41	3.53-3.59*	3.51	3.58*	3.68
		ОН	t	N/O	4.27	3.32	2.40	N/O	1.26
Isobutanol (108°C)		CH ₃	d	0.88	0.82	0.87	0.86	0.90	0.92
		СН	m	1.70-1.80	1.60	1.68	1.66	1.70	1.77
		CH ₂	m	3.38	3.11-3.19	3.26-3.34	3.25	3.30	3.41
		OH	t	N/O	4.39	3.45	2.52	N/O	1.31
Isooctane ^b (99°C)		(CH ₃) ₃ C	S	insoluble	0.88	0.90	0.90	0.90	0.90
		$(CH_3)_2$ CH	d	-	0.90	0.91	0.91	0.92	0.91
		CH ₂	d	-	1.11	1.14	1.14	1.14	1.12
		CH CH	m	_	1.59-1.70	1.68	1.68	1.63-1.73	1.60-1.71
Isopropyl acetate (89°C)		$(CH_3)_2$ CH	d	1.25	1.17	1.19	1.19	1.22	1.23
	, ,		u						
isopropyractians (es e)		CH ₃ CO	S	2.07	1.96	1.94	1.94	1.99	2.02

Solvent (bp)				D ₂ O		$(CD_3)_2CO$			CDCl ₃
(R)-(+)-Limonene ^b (176°C)		$CH_2CH_2C=c$	m	insoluble	1.34-1.45	1.40-1.51		1.42-1.53	1.42-1.52
		CH ₃ C=CH	S	-	1.61	1.62	1.63	1.63	1.65
		CH ₃ C=CH ₂	S	-	1.70	1.72	1.73	1.72	1.73
		$CH_2CH_2C=^c$	m	-	1.71-1.77	1.78	1.75-1.81	1.79	1.79
		CH_2 CH=	m	-	1.80-1.95	1.83-1.99	1.84-1.99		1.86-1.99
		$CH + CH_2C(Me)$	m	-	1.95-2.08 4.69	1.99-2.13 4.69	4.71	2.00-2.14 4.69	2.00-2.15 4.70
		CH ₂ = CH=	s br s	-	5.37	5.38	5.39	5.38	5.40
Methanesulfonic acid (167°C)		CH ₃	S	2.80	5.70	3.00	2.98	2.98	R
Methanol (65°C)		CH ₃	S	3.34	3.16	3.31	3.28	3.34	3.49
inclination (65°C)		OH	s	N/O	4.01	3.12	2.16	N/O	1.09
Methyl acetate (57°C)		CH ₃ CO	s	2.09	1.92	1.98	1.99	2.02	2.05
		OCH ₃	s	3.68	3.61	3.59	3.60	3.64	3.67
Methyl ethyl ketone (80°C)		CH ₃ CH ₂	t	1.26	0.91	0.96	0.96	1.01	1.06
, , , , , , , , , , , , , , , , , , ,	,	CH ₃ CO	S	2.19	2.07	2.07	2.06	2.12	2.14
		CH_2 CH ₃	q	3.18	2.43	2.45	2.43	2.50	2.46
Methyl isobutyl ketone ^b (117°C)		(<i>CH</i> ₃) ₂ CH	d	0.90	0.85	0.88	0.88	0.85	0.92
, ,		CH	m	2.08	2.00	2.02-2.11	2.02-2.08	2.00	2.13
		CH ₃ CO	S	2.21	2.05	2.06	2.05	2.05	2.12
		CH ₂	d	2.43	2.28	2.31	2.29	2.28	2.30
Methylcyclohexane ^b (101°C)		CH2CHc (ax.)	m	insoluble	0.80-0.90	0.87-0.93	0.88-0.94	0.82-0.94	0.82-0.93
		CH ₃	d	-	0.84	0.84	0.86	0.87	0.86
		CH_2^c (4)(ax.)	m	-	1.04-1.14	1.07-1.17	1.08-1.18	1.09-1.20	1.06-1.17
		$CH_2^c(3)(ax.)$	m	-	1.14-1.25	1.24	1.25	1.26	1.17-1.28
		CH	m	-	1.32	1.34		1.31-1.39	1.33
		all equatorial H's	m	-	1.56-1.67	1.58-1.70	1.58-1.71	1.60-1.73	1.58-1.72
2-Methyltetrahydrofuran ^b (78°C)		CH ₃	d	1.23	1.12	1.14	1.15	1.21	1.23
		CH_2 CH(Me) ^c	m	1.43-1.52	1.26-1.36	1.30-1.39			1.36-1.46
		CH ₂ CH ₂ O	m	1.86-2.01	1.73-1.88	1.76-1.91		1.84-1.99	1.80-1.95
		CH ₂ CH(Me) ^c	m	2.02-2.11	1.89-1.97	1.92-2.00			1.95-2.03
		CH ₂ O ^c	m	3.70-3.77	3.52-3.59	3.55-3.63	3.60	3.66-3.73	3.71
		CH ₂ O ^c	m	3.84-3.91	3.71-3.78	3.76-3.82	3.79		3.86-3.92
Nitromathana (1019C)		CH	m	3.99-4.07	3.79-3.87	3.82-3.88		3.90-3.99	
Nitromethane (101°C) 1-Octanol (196°C)	00	CH ₃	S	4.40	4.42	4.43	4.31	4.34	4.33
1-Octanol (190 C)		CH ₃ CH ₂ (3-7)		0.83-0.90* 1.23-1.38	0.86 1.19-1.32	0.88	0.89	0.90 1.23-1.40	0.88 1.22-1.39
		$CH_2(3-7)$ $CH_2(2)$	m m	1.51-1.59	1.19-1.32	1.46-1.53	1.42-1.51		1.57
		$CH_2(2)$ $CH_2(1)$	m	3.60*	3.35-3.40	3.48-3.55	3.43-3.50	3.53*	3.60-3.68
		OH	t	N/O	4.31	3.37	2.45	N/O	1.22-1.39
<i>n</i> -Pentane (36°C)		CH ₃	t	insoluble	0.86	0.88	0.89	0.90	0.88
1 0 (2 3 3)		CH ₂	m	-	1.27	1.27	1.29	1.29	1.27
1-Pentanol (137°C)		CH ₃	t	0.89	0.86	0.89	0.90	0.92	0.91
		CH ₂ (3/4)	m	1.26-1.39	1.21-1.33	1.27-1.37		1.28-1.40	1.29-1.40
		CH ₂ (2)	m	1.50-1.62	1.37-1.45	1.45-1.55		1.48-1.57	1.52-1.62
		$CH_2(1)$	t	3.60	3.37	3.37	2.46	3.53	
		OH	t	N/O	4.31*	3.48-3.55	3.44-3.51	N/O	3.64
1,2-Propanediol (187°C)		CH ₃	d	1.14	1.00	1.07	1.04	1.12	1.16
		ОН	t	N/O	4.44	3.57	2.75	N/O	2.75-2.96 *
		ОН	d	N/O	4.38	3.54	2.81	N/O	2.75-2.96*
		CH_2	m	3.41-3.47	3.12-3.19	3.30-3.37	3.21-3.30	3.40*	3.34-3.43
		CH ₂	m	3.51-3.58	3.26*	3.37-3.44	3.34-3.42	3.41*	3.57-3.67
		CH	m	3.84-3.92	3.52-3.60	3.69-3.79	3.64-3.74	3.75	3.84-3.95
1,3-Propanediol (214°C)		CH ₂ (2)	quint		1.56	1.70	1.66	1.74	1.83*
		$CH_2(1/3)$	t	3.96	4.30	3.54	2.73	3.65	2.11*
		OH	m	N/O	3.39-3.51	3.62-3.70	3.55-3.65	N/O	3.81-3.91

1-Propanol (97°C)	Solvent (bp)				D ₂ O	(CD.) SO	(CD.) CO	CD CN	CD OD	CDCl ₃
CH ₃ (2) m 1.49-1.62 1.36-1.46 1.44-1.55 1.43-1.52 1.49-1.60 1.56° CH ₄ (1) m 3.56° 3.33-3.37 3.44-3.51 3.40-3.47 3.5° 3.55-3.6° OH t NO 4.34 3.39 2.47 NO 1.42° CH ₂ (1) m 4.05 3.77 3.85-5.96 3.81-3.92 3.92 4.03 OH d NO 4.34 3.37 2.51 NO 1.38 Propionic Acid (141°C) CH ₃ t 1.07 0.99 1.07 1.06 1.10 1.16 CH ₂ q 2.32 2.21 2.29 2.29 2.30 2.39 OH brs N/O 11.95 N/O 8.85 N/O N/O n-Propylacetate (102°C) CH ₃ (1) t 0.92 0.88 0.92 0.92 0.94 0.94 CH ₂ CH ₂ CH ₃ m 1.65 1.57 1.61 1.61 1.64 1.65 CH ₂ CO t 4.06 3.95 3.97 3.97 4.01 4.02 Propylene carbonate (242°C) CH ₃ d 1.48 1.37 1.45 1.40 R 1.50 CH ₂ m 4.20° 4.03-4.13 3.95-4.07 - 4.03° CH ₂ CH ₂ m 4.66-4.73 4.52-4.59 4.58-4.60 4.84-8.8		00	CH	t						-
CH ₁ (1)	Tropunor(57 C)									
2-Propanol (82°C)										
2-Propanol (82°C)										
CH m 4.05 3.77 3.85-3.95 3.81-3.92 3.92 4.03 Propionic Λcid (141°C) CH ₃ t 1.07 0.99 1.07 1.06 1.10 1.18 Propionic Λcid (141°C) CH ₂ q 2.32 2.21 2.29 2.29 2.30 2.39 n-Propyl acetate (102°C) CH ₂ CH ₂ t 0.92 0.98 0.92 0.94 0.92 0.92 0.92 0.90 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	2-Propanol (82°C)	00								
Propionic Acid (141°C) CH ₃ t 1.07 0.99 1.07 1.06 1.10 1.16 CH ₂ q 2.32 2.21 2.29 2.29 2.30 2.39 n-Propyl acetate (102°C) CH ₂ CH ₃ t 0.92 0.88 0.92 0.92 0.94 0.94 n-Propyl acetate (102°C) CH ₂ CH ₃ m 1.65 1.57 1.61 1.61 1.64 1.65 CH ₂ CO t 4.06 3.95 3.97 3.97 4.01 4.02 Propylene carbonate (242°C) CH ₃ d 1.48 1.37 1.45 1.40 R 1.50 CH ₂ CO t 4.06 3.95 3.97 3.97 4.01 4.02 Propylene carbonate (242°C) CH ₃ d 1.48 1.37 1.45 1.40 R 1.50 CH ₂ CO t 4.06 3.95 3.97 3.97 4.01 4.02 Pyridine (115°C) CH ₃ 4.66	2 110041101 (02 %)		3							
Propionic Acid (141°C) CH ₃ (CH ₂ q 2.32 2.21 2.29 2.29 2.29 2.30 2.39 0.49 0.40 br s N/O 11.95 N/O 8.85 N/O N/O 1.06 n-Propyl acetate (102°C) CH ₂ CH ₂ t 0.92 0.88 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Propionic Acid (141°C)	00								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tropionie Tiele (TTT 2)	Fire Francisco	5							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n-Propyl acetate (102°C)	00								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110231110 (102 0)									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Propylene carbonate (242°C)	00								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2.2.2)									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-							4.81-4.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pyridine (115°C)								8.53	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 3()									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tetrahydrofuran (65°C)									
Toluene (111°C)	, ,		<u>-</u>	m						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Toluene (111°C)				insoluble					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		,	m	_		7.1-7.2	7.1-7.3		
Triethylamine (89°C)				m	-			7.1-7.3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Triethylamine (89°C)			t	1.07					
Water (100°C) H_2O s 3.33 2.84 2.13 4.87 1.56 γ-Valerolactone ^b (207°C) CH_3 d 1.41 1.30 1.34 1.34 R 1.42 $CH_2CH(Me)^c$ m 1.91 1.74 1.82 1.78 1.83 $CH_2CH(Me)^c$ m 2.37-2.47 2.23-2.32 2.33-2.41 2.26-2.37 2.36 $CH_2C=O$ m 2.58-2.73 2.43-2.58 2.42-2.56 2.40-2.54 2.49-2.61 CH m 4.83 4.55-4.66 4.57-4.66 4.55-4.66 4.60-4.69 P -Xylene (138°C) CH_3 s 2.30 2.24 2.26 2.27 2.26 2.30	•			q						
Water (100°C) H_2 O s 3.33 2.84 2.13 4.87 1.56 γ-Valerolactone ^b (207°C) CH_3 d 1.41 1.30 1.34 1.34 R 1.42 CH_2 CH(Me) ^c m 1.91 1.74 1.82 1.78 1.83 CH_2 CH(Me) ^c m 2.37-2.47 2.23-2.32 2.33-2.41 2.26-2.37 2.36 CH_2 C=O m 2.58-2.73 2.43-2.58 2.42-2.56 2.40-2.54 2.49-2.61 CH m 4.83 4.55-4.66 4.57-4.66 4.55-4.66 4.60-4.65 CH m 4.83 4.55-4.66 4.57-4.66 4.55-4.66 4.60-4.65 CH m 4.83 4.55-4.66 4.57-4.66 4.55-4.66 4.60-4.65 CH m 4.83 4.55-4.66 4.57-4.66 2.27 2.26 2.30 CH_3 s 2.30 2.24 2.26 2.27 2.26 2.30			-	10.00						
γ-Valerolactone ^b (207°C)	Water (100°C)	00		s						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	2	d	1.41					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	m	1.91					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 ' '	m						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										2.49-2.61
P-Xylene (138°C) CH m 4.83 4.55-4.66 4.57-4.66 4.55-4.66 4.60-4.69 p-Xylene (138°C) CH₃ s 2.30 2.24 2.26 2.27 2.26 2.30										4.60-4.69
<i>p</i> -Xylene (138°C)										4.60-4.69
, , , , , , , , , , , , , , , , , , ,	p-Xylene (138°C)	0		S					2.26	
0 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.			CH	S	7.18	7.05	7.04	7.06	7.02	7.06

Section 3:

			D 0	(CD.) CO.	(CD.) CO.	CD CN	CD OD	CD CI
Solvent (bp)		CIT	D ₂ O	(CD ₃) ₂ SO	(CD ₃) ₂ CO	CD ₃ CN	CD ₃ OD	CDCl ₃
Acetic acid (118°C)		CH ₃	21.03	20.95	20.51	20.73	20.56	20.81
A 4 (560C)	_	CO	177.21	171.93	172.31	173.21	175.11	175.99
Acetone (56°C)		CH ₃	30.89	30.56	30.60	30.91	30.67	30.92
A a stanitnila (829C)		CO	215.94	206.31	205.87	207.43	209.67	207.07
Acetonitrile (82°C)		CH ₃ CN	1.47	1.03	1.12	1.79	0.85	1.89
(A 1 -1 -1 -1 (1020C)	- 1		119.68	117.91	117.60	118.26	118.06	116.43
<i>t</i> -Amyl alcohol (102°C)		CH ₃ CH ₂	10.72	8.53	8.90	8.97	8.95	8.60
		$(CH_3)_2$	30.01	28.65	29.13	29.04	28.64	28.69
		CH ₂	38.09	35.84	37.06	37.08	37.12	36.38
1 1 1 (0500)	~	C	74.93	68.76	70.16	70.85	71.63	71.20
<i>t</i> -Amyl methyl ether (85°C)		CH₃CH₂	10.40	7.99	8.40	8.55	8.47	8.22
		$(CH_3)_2$ C	26.49	24.18	24.73	24.83	24.83	24.49
		CH ₂	33.91	31.57	32.88	32.88	32.97	32.10
		CH ₃ O	51.17	48.26	48.95	49.17	49.33	49.04
1 (15400)		C	80.06	73.82	74.72	75.18	76.50	74.79
Anisole (154°C)		CH ₃	58.12	54.80	55.34	55.78	55.55	55.13
		C(i)	116.94	113.75	114.66	114.85	114.89	113.89
		CH(o)	124.19	120.33	121.25	121.53	121.59	120.65
		CH(m)	132.70	129.34	130.22	130.50	130.42	129.43
		CH(p)	189.21	159.11	160.68	160.74	161.16	159.55
1-Butanol (118°C)		CH ₃	15.91	13.75	14.21	14.26	14.24	13.86
		CH ₂ (3)	21.22	18.54	19.73	19.81	20.03	18.90
		CH ₂ (2)	36.29	34.59	35.93	35.81	35.81	34.89
		$CH_2(1)$	64.41	60.27	62.13	62.35	62.69	62.76
2-Butanol (100°C)		CH_3 CH $_2$	12.03	9.96	10.41	10.46	10.40	9.96
		<i>CH</i> ₃CH	24.20	22.98	23.50	23.38	22.95	22.94
		CH ₂	33.65	31.60	32.87	32.85	32.83	32.07
		CH	72.24	67.03	68.92	69.32	70.00	69.52
<i>t</i> -Butanol (82°C)		CH ₃	30.29	30.38	30.72	30.68	30.91	31.25
		C	70.36	66.88	68.13	68.74	69.40	69.15
<i>n</i> -Butyl acetate (126°C)		CH_3 CH $_2$	15.78	13.44	13.95	14.04	14.05	13.71
		CH ₂	21.33	18.51	19.76	19.88	20.19	19.14
		CH_3 CO	23.32	20.62	20.78	21.15	20.84	21.01
		CH ₂	32.70	30.07	31.48	31.51	31.84	30.67
		CH_2	68.38	63.39	64.43	64.87	65.46	64.37
		CO	177.72	170.3	170.95	171.78	173.09	171.25
t-Butyl acetate (95°C)		CH ₃ CO	24.90	22.10	22.32	22.67	22.41	22.54
		$(CH_3)_3$ C	30.06	27.65	28.21	28.30	28.33	28.09
		C	85.33	79.37	80.06	80.59	81.54	80.16
		CO	176.88	169.62	170.39	171.16	172.56	170.56
<i>t</i> -Butyl methyl ether (55 $^{\circ}$ C)		CCH_3	26.60	26.79	27.24	27.28	27.22	26.99
		OCH ₃	49.37	48.70	49.35	49.52	49.66	49.45
		C	75.62	72.04	72.81	73.17	74.32	72.87
<i>t</i> -Butyl ethyl ether (72°C)		CH₃CH₂	17.83	16.09	16.65	16.73	16.47	16.33
		$(CH_3)_3$	29.35	27.30	27.85	27.90	27.86	27.62
		CH ₂	60.19	55.91	57.06	57.35	58.03	56.77
		$C(CH_3)_3$	77.68	71.80	72.58	72.98	74.26	72.57
Butylene carbonate (250°C)		CH ₃	10.42	8.23	8.79	8.85	R	8.52
(2000 00000000000000000000000000000		CH ₂ O	28.83	25.86	27.35	27.37		26.99
		CH ₂ CH ₃	72.94	68.73	69.76	70.15		69.00
		CH ₂ CH ₃	82.73	77.84	78.83	79.28		77.98
		CO	160.89	154.82	155.69	156.39		155.06
Chloroform (61°C)		СН	insoluble	79.16	79.19	79.17	79.44	77.36
emororoum (or c)		011	moduoic	77.10	17.17	10.11	//.	11.50

Solvent (bp)			D ₂ O	(CD ₃) ₂ SO	(CD ₃) ₂ CO	CD ₃ CN	CD ₃ OD	CDCl ₃
2,4,6-Collidine (171°C)		CH ₃ (<i>p</i>)	22.84	20.16	20.65	20.82	20.83	20.78
2,1,0 comanie (171 c)		$CH_3(o)$	25.20	23.69	24.27	24.36	23.49	24.29
		CH CH	124.62	120.75	121.51	121.83	122.84	121.18
		$CCH_3(p)$	152.95	146.84	147.93	148.59	150.47	147.44
		C CH ₃ (o)	159.70	156.63	158.04	158.35	158.26	157.39
Cyclohexane (81°C)		CH ₂	insoluble	26.33	27.51	27.63	27.96	26.94
Cyclohexanone (155°C)		CH ₂ (4)	26.98	24.22	25.62	25.67	R	25.02
· ·		CH ₂ (3)	29.71	26.35	27.71	27.86		27.03
		$CH_2(2)$	44.24	41.23	42.27	42.50		42.00
		CO	223.50	210.67	210.27	212.11		212.12
Cyclopentyl methyl ether (106°C)		CH_2 CH $_2$ O	25.87	23.04	24.14	24.29	24.45	23.55
		CH ₂ O	34.13	31.33	32.51	32.64	32.85	31.97
		CH ₃	58.29	55.44	56.18	56.40	56.54	56.34
		CH	86.68	81.89	83.33	83.61	84.48	82.98
<i>p</i> -Cymene ^b (177°C)		CH ₃ Ar	insoluble	20.47	20.94	21.00	21.04	20.96
		$(CH_3)_2$ CH		23.89	24.39	24.42	24.56	24.11
		$CH(CH_3)_2$		32.89	34.36	34.47	34.97	33.69
		CH		125.97	126.94	127.23	127.18	126.27
		CH		128.70	129.66	129.90	129.89	128.97
		€ CH		134.44	135.64	136.16	136.15	135.14
		C CH ₃		145.19	146.47	146.90	146.98	145.88
1,2-Dichloroethane (84°C)		CH ₂	insoluble	45.02	45.25	45.54	45.11	43.50
Dichloromethane (40°C)	-1-1	CH ₂	insoluble	54.84	54.95	55.32	54.78	53.52
Diethyl carbonate (127°C)		CH ₃	16.29	14.01	14.55	14.60	14.61	14.29
		CH ₂	67.71	63.19	64.03	64.50	64.76	63.78
		CO	158.83	154.41	155.86	156.09	156.79	155.18
Diethyl ether (35°C)		CH ₃	14.77	15.12	15.78	15.63	15.46	15.20
D: 41 1 (2100C)		CH ₂	66.42	62.05	66.12	66.32	66.88	65.91
Diethyl succinate (218°C)		CH ₃	16.14	13.96	14.49	14.57	14.51	14.19
		CH ₂ CH ₂	31.96	28.53	29.68	29.88	30.03	29.22
		CH ₂ O	64.80	59.89	60.80	61.29	61.75	60.68
Dialyma (162%C)		CO	178.09	171.78	172.65	173.28	174.17	172.33
Diglyme (162°C)		CH ₃	58.67	57.98	58.77	58.90	59.06	59.01
		CH ₂	70.05	69.54	71.03	70.99	71.33 72.92	70.51
1,2-Dimethoxyethane (85°C)		CH ₂ CH ₃	71.63	71.25 58.01	72.63 58.45	72.63 58.89	59.06	71.90 59.08
1,2-Dimethoxyethane (83 C)		CH ₂	58.67 71.49	17.07	72.47	72.47	72.72	71.84
Dimethyl carbonate (90°C)		CH ₂	58.06	54.56	54.96	55.41	55.30	54.85
Difficulty carbonate (90°C)		CO CO	160.04	155.63	157.05	157.29	157.99	156.40
Dimethyl isosorbide (94°C)		OCH ₃	59.47	56.16	56.90	57.23	57.32	57.17
Difficulty isosofolde (94 C)		OCH ₃	60.53	57.08	57.86	58.18	58.44	58.23
		CH ₂	72.05	69.19	70.72	70.62	71.00	69.77
		CH ₂	75.39	72.00	73.27	73.54	73.94	73.04
		CH (junction)	82.54	79.37	80.87	80.94	81.51	79.92
		CH(OMe)	83.71	80.92	82.54	82.61	83.00	81.80
		CH (junction)	87.70	85.03	86.71	86.68	87.03	85.91
		CH(OMe)	87.70	85.05	86.81	86.81	87.07	85.93
Dimethylacetamide (165°C)		CH ₃	21.09	21.29	21.51	21.76	21.32	21.53
(100 0)		NCH ₃	35.03	37.38	34.89	35.17	35.50	35.28
		NCH ₃	38.76	34.42	37.92	38.26	38.43	38.13
		CO	174.57	169.54	170.61	171.31	173.32	171.07
Dimethylformamide (153°C)		CH ₃	32.03	30.73	31.03	31.32	31.61	31.45
,		CH ₃	37.54	35.73	36.15	36.57	36.89	36.50
		СН	165.53	162.29	162.79	163.31	164.73	162.62
Dimethyl sulfoxide (189°C)		CH ₃	39.39	40.45	41.23	41.31	40.45	40.76
(10) 0)		3	57.57		5	71.01	, , , , ,	.0.,0

Solvent (bp)		D_2O	$(CD_3)_2SO$	$(CD_3)_2CO$	CD ₃ CN	CD ₃ OD	CDCl ₃
Dimethylimidazolidinone (225°C)	CH ₃	33.68	31.08	31.65	31.85	31.56	31.53
	CH ₂	47.88	44.37	45.62	45.81	46.13	45.09
	CO	166.86	161.27	162.37	163.00	164.19	162.10
1,4-Dioxane (102°C)	CH ₂	67.19	66.36	67.60	67.72	68.11	67.14
1,3-Dioxolane (75°C)	CH ₂ CH ₂	67.09	63.74	65.00	65.21	65.51	64.58
	OCH ₂ O	96.94	93.98	95.34	95.57	95.84	95.09
Ethanol (78°C)	3	17.47	18.51	18.89	18.80	18.40	18.41
	CH ₂	58.05	56.07	57.72	57.96	58.26	58.28
Ethyl acetate (77°C)	CH ₃	13.92	14.40	14.50	14.54	14.49	14.19
	<i>CH</i> ₃CO	21.15	20.68	20.83	21.16	20.88	21.04
	CH_2	62.32	59.74	60.56	60.98	61.50	60.49
	CO	175.26	170.31	170.96	171.68	172.89	171.36
Ethyl lactate ^b (154°C)	CH_3CH_2	16.14	14.01	14.48	14.55	14.53	14.19
	CH_3 CH	22.01	20.28	20.78	20.80	20.59	20.42
	CH_2	65.13	59.85	61.16	61.78	62.00	61.69
	СН	69.61	65.82	67.42	67.61	67.91	66.76
	CO	179.43	174.45	175.57	176.01	176.43	175.75
Ethyl propionate (99°C)	CH ₃ CH ₂ CO	11.22	8.89	9.38	9.49	9.46	9.14
	CH ₃ CH ₂ O	16.17	14.02	14.54	14.62	14.54	14.26
	CH ₂ CO	30.32	26.71	27.82	28.12	28.38	27.64
	CH ₂ O	64.45	59.57	60.43	60.90	61.44	60.24
	CO	180.91	173.49	174.29	175.10	176.30	174.53
Ethylene carbonate (248°C)		68.88	64.89	65.69	66.04	R	64.59
	CO	161.38	155.44	156.28	156.98		155.41
Ethylene glycol (197°C)		63.17	62.76	64.26	64.22	64.30	63.79
Formic acid (101°C)	CO ₂ H	165.19	162.98	162.32	162.72	164.42	165.02
Furfural (162°C)		116.12	112.81	113.44	113.66	113.81	112.58
1 unui (102 C)	CHC(CHO)	153.05	122.90	122.25	123.06	123.27	120.93
	CH <i>CH</i> O	183.57	149.10	149.33	149.66	150.14	148.06
	C	154.96	152.41	154.21	154.13	154.58	153.02
	C- <i>CHO</i>	218.56	178.31	178.43	179.07	179.69	177.88
Glycerol (290°C)		65.35	62.97	64.57	64.37	64.47	insoluble
dijecioi (270°C)	CH ₂	74.92	72.37	73.37	73.29	73.91	
Glycerol diacetate (190°C)		23.10	20.50	20.65	21.01	R	20.81
Glyceror diacetate (170°C)	CH ₂	65.68	61.81	62.81	63.06		62.19
	CO CO	176.98	170.14	170.87	171.56		170.78
Glycerol triacetate (259°C)		22.96	20.38	20.55	20.90	R	20.69
Glycerof triacctate (239 C)	CH₃CO CH₃CO	23.18	20.57	20.78	21.11	K	20.89
		65.58		62.85	63.07		62.27
	CH ₂ CH	72.60	61.82 68.73	69.96	70.00		69.08
	CO	176.12	169.68	170.43	171.07		170.12
<i>n</i> -Heptane (98°C)	CO CH ₃	176.67	169.98	170.70	171.40 14.43	14.45	170.51
n-Heptane (98°C)		insoluble	13.90	14.33		14.45	14.12
	CH ₂		22.05	23.32	23.45	23.77	22.71
	CH ₂		28.32	29.74	29.81	30.19	29.03
11 ((000)	CH ₂		31.21	32.60	32.67	33.08	31.90
<i>n</i> -Hexane (69°C)	CH ₃	insoluble	13.88	14.34	14.43	14.45	14.14
	CH ₂ (2)		22.05	23.28	23.40	23.68	22.70
145.000	CH ₂ (3)		30.95	32.30	32.36	32.73	31.64
1-Hexanol (156°C)	C11 ₃	16.17	13.84	14.32	14.39	14.40	14.03
	CH ₂ (5)	24.80	22.06	23.35	23.45	23.74	22.65
	CH ₂ (4)	27.58	25.08	26.37	26.38	26.67	25.44
	CH ₂ (3)	33.69	31.11	32.51	32.51	32.90	31.66
	CH ₂ (2)	34.11	32.42	33.77	33.65	33.67	32.79
	$CH_2(1)$	64.76	60.63	62.49	62.68	63.05	63.09

Solvent (bp)			D_2O	(CD ₃) ₂ SO	(CD ₃) ₂ CO	CD ₃ CN	CD ₃ OD	CDCl ₃
Isoamyl acetate (142°C)		CH₃CH	23.34	20.64	20.80	21.17	20.86	21.03
		$(CH_3)_2$	24.49	22.19	22.70	22.75	22.82	22.46
		CH	27.24	24.41	25.75	25.89	26.27	25.08
		CH ₂ CH	39.36	36.77	38.16	38.17	38.53	37.34
		CH_3O	67.20	62.14	63.19	63.64	64.20	63.16
		C=O	N/O	170.27	170.93	171.75	173.05	171.23
Isoamyl alcohol (131°C)		CH ₃	24.63	22.51	22.98	22.96	23.03	22.62
		СН	26.87	24.13	25.42	25.55	25.86	24.72
		$CH_{2}(2)$	43.17	41.50	42.80	42.65	42.71	41.76
		$CH_2(1)$	63.03	58.86	60.70	60.93	61.27	61.37
Isobutanol (108°C)		CH ₃	21.05	19.01	19.37	19.32	19.40	18.86
		CH	32.60	30.37	31.74	31.74	31.96	30.85
		CH ₂	71.50	67.64	69.44	69.52	69.95	69.81
Isooctane ^b (99°C)		СН	insoluble	24.04	25.28	25.40	25.79	24.61
		$(CH_3)_3$ C		25.24	25.77	25.80	25.92	25.48
		$(CH_3)_2$ CH		29.83	30.35	30.37	30.55	30.10
		C		30.69	31.51	31.59	31.84	31.05
		CH ₂		52.55	53.79	53.84	54.34	53.09
Isopropyl acetate (89°C)		CH₃CO	insoluble	21.06	21.21	21.57	21.25	21.44
		$(CH_3)_2CH$		21.56	22.00	22.07	22.00	21.84
		CH		66.93	67.75	68.26	69.07	67.64
		CO		169.78	170.41	171.21	172.54	170.66
(R)-(+)-Limonene ^b (176°C)		$CH_3C=CH_2$	insoluble	20.55	20.93	21.03	21.00	20.83
		CH ₃ C=CH		23.16	23.60	23.65	23.65	23.48
		CH_2 CH_2C=		27.25	28.68	28.84	29.19	27.94
		$CH_2C=c$		29.91	31.10	31.18	31.54	30.61
		$CH_2C=c$		30.05	31.48	31.59	31.92	30.83
		CH		40.27	41.89	41.98	42.52	41.11
		CH ₂ =		108.62	108.90	108.98	108.98	108.36
		CH=		120.31	121.32	121.50	121.61	120.65
		C		132.96	134.09	134.58	134.57	133.76
		C		149.27	150.72	151.37	151.21	150.29
Methanesulfonic acid (167°C)		CH ₃	41.42	39.52	39.72	39.98	39.47	R
Methanol (65°C)		CH ₃	49.50	48.59	49.77	49.90	49.86	50.41
Methyl acetate (57°C)		<i>CH</i> ₃CO	20.55	20.45	20.47	20.84	20.48	20.67
•	ĺ	CH ₃ O	52.59	51.21	51.54	52.02	52.06	51.58
		CO	175.54	170.80	171.34	172.16	173.36	171.51
Methyl cyclohexane ^b (101°C)		CH ₃	insoluble	22.65	23.17	23.25	23.32	22.91
• •		$CH_2(4)$		25.67	26.94	27.10	27.43	26.35
		$CH_2(3)$		25.73	27.07	27.22	27.56	26.46
		CH		32.01	33.45	33.57	34.03	32.74
		$CH_2(2)$		34.77	36.09	36.19	36.61	35.45
Methyl ethyl ketone (80°C)		CH₃CH₂	7.87	7.61	8.03	8.14	8.09	7.86
, ,		CH₃CO	29.49	29.26	29.30	29.60	29.39	29.49
		CH ₂ CH ₃	37.27	35.83	36.75	37.09	37.34	36.89
		CO	218.43	208.72	208.30	209.88	212.16	209.56
Methyl isobutyl ketone (117°C)		$(CH_3)_2$	19.62	22.28	22.72	22.76	22.80	22.53
, ,		СН	22.52	23.85	25.03	25.29	25.68	24.63
		<i>CH</i> ₃CO	27.62	30.03	30.15	30.44	30.26	30.34
		CH ₂	50.36	51.76	52.78	53.04	53.38	52.80
		CO	215.72	208.16	207.71	209.44	211.81	208.97

Solvent (bp)		D_2O	(CD ₃) ₂ SO	(CD ₃) ₂ CO	CD ₃ CN	CD ₃ OD	CDCl ₃
2-Methyl tetrahydrofuran (78°C)	CH ₃	22.58	20.81	21.26	21.33	21.12	20.97
,	CH ₂ (4)	28.03	25.32	26.43	26.58	26.76	25.91
	CH ₂ (3)	35.17	32.61	33.75	33.83	34.04	33.10
	CH ₂ (5)	70.39	66.64	67.93	68.10	68.68	67.73
	СН	79.09	74.20	75.49	75.78	76.75	75.23
1-Octanol (196°C)	CH ₃	insoluble	13.85	14.35	14.43	14.45	14.10
,	CH ₂ (7)		21.99	23.32	23.44	23.75	22.66
	CH ₂ (6)		25.41	26.71	26.71	26.99	25.76
	CH ₂ (5)		28.65	30.10	30.13	30.47	29.28
	CH ₂ (4)		28.82	30.25	30.25	30.61	29.41
	$CH_2(3)$		31.16	32.61	32.65	33.04	31.82
	$CH_2(2)$		32.45	33.81	33.68	33.71	32.83
	$CH_2(1)$		60.62	62.49	62.68	63.05	63.11
Nitromethane (101°C)	CH ₃	63.22	63.28	63.21	63.66	63.08	62.50
<i>n</i> -Pentane (36°C)	CH ₃	insoluble	13.28	14.29	14.37	14.39	14.08
	$CH_{2}(2)$		21.70	22.98	23.08	23.38	22.38
	$CH_{2}(3)$		33.48	34.83	34.89	35.30	34.16
1-Pentanol (137°C)	CH ₃	16.16	13.91	14.37	14.43	14.42	14.04
	$CH_{2}(4)$	24.63	21.93	23.23	23.30	23.60	22.50
	$CH_{2}(3)$	30.17	27.64	28.90	28.91	29.21	27.93
	$CH_2(2)$	33.83	32.12	33.48	33.37	33.39	32.51
	$CH_2(1)$	64.73	60.61	62.47	62.65	63.02	63.07
1,2-Propanediol (187°C)	CH_3	20.82	19.87	19.76	19.53	19.56	18.79
	СН	69.44	67.08	68.64	68.49	68.62	68.03
	CH ₂	70.77	67.14	68.66	68.75	69.25	68.34
1,3-Propanediol (214°C)	$CH_{2}(2)$	36.62	35.70	36.40	36.09	36.32	34.08
	$CH_2(1/3)$	61.47	57.87	60.44	60.56	60.06	62.22
1-Propanol (97°C)	CH ₃	12.42	10.33	10.66	10.68	10.62	10.15
	$CH_2(2)$	27.45	25.53	26.77	26.74	26.71	25.91
	$CH_2(1)$	66.43	62.37	64.19	64.36	64.73	64.69
2-Propanol (82°C)	CH ₃	26.56	25.38	25.79	25.67	25.29	25.38
	CH	67.11	61.91	63.72	64.15	64.78	64.44
Propionic Acid (141°C)	CH_3	11.90	8.99	9.39	9.39	9.53	8.83
	CH_2	31.32	26.80	27.37	27.52	28.15	27.39
	CO ₂ H	184.54	175.07	175.36	176.19	178.35	180.69
<i>n</i> -Propyl acetate (102°C)	CH_3CH_2	8.09	10.20	10.59	10.65	10.66	10.37
	CH ₂ O	19.00	20.66	22.69	22.79	20.81	21.00
	<i>CH</i> ₃CO	19.83	21.46	20.75	21.13	23.04	21.97
	CH_2CH_3	65.82	65.23	66.20	66.60	67.23	66.10
	CO	173.44	170.37	170.96	171.78	173.10	171.26
Propylene carbonate (242°C)	CH_3	21.09	18.72	19.36	19.42	R	19.47
	CH_2	74.54	70.37	71.40	71.76		70.64
	CH	78.46	73.66	74.45	74.94		73.49
	CO	160.80	154.78	155.66	156.36		154.98
Pyridine (115°C)	CH(3)	125.12	123.84	124.57	127.76	125.53	123.75
	CH(4)	138.27	136.05	136.56	136.89	138.35	135.96
	CH(2)	149.18	149.58	150.67	150.76	150.07	149.90

Solvent (bp)		D_2O	$(CD_3)_2SO$	$(CD_3)_2CO$	CD ₃ CN	CD ₃ OD	CDCl ₃
Tetrahydrofuran (65°C)	CH_2	25.67	25.14	26.15	26.27	26.48	25.62
	CH ₂ O	68.68	67.03	68.07	68.33	68.83	67.97
Toluene (111°C)	CH ₃	insoluble	20.99	21.46	21.50	21.50	21.46
	CH(p)		125.29	126.12	126.28	126.29	125.33
	CH(m)		128.18	129.03	129.23	129.20	128.26
	CH(o)		128.88	129.76	129.94	129.91	129.07
	C(i)		137.35	138.48	138.90	138.85	137.89
Triethylamine (89°C)	CH ₃	9.07	11.74	12.49	12.38	11.09	11.61
	CH_2	47.19	45.74	47.07	47.10	46.96	46.25
γ-Valerolactone ^b (207°C)	CH ₃	22.80	20.64	21.21	21.23	R	21.09
	CH_2 C=O	31.75	28.50	29.37	29.69		29.09
	CH_2 CH(Me)	31.97	28.98	29.69	30.28		29.73
	СН	82.98	76.62	77.46	78.18		77.24
	CO	185.24	177.02	177.21	178.35		177.19
<i>p</i> -Xylene (138°C)	CH ₃	22.79	20.47	20.94	21.02	21.03	20.95
	СН	131.92	128.66	129.65	129.87	129.84	128.90
	C	188.56	133.98	135.24	135.70	135.71	134.67