SUPPORTING INFORMATION

Combining enzyme and photoredox catalysis for aminoalkylation of

indoles via a relay catalysis strategy in one pot

Yan-Hong He*, Yang Xiang, Da-Cheng Yang, Zhi Guan*

Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering,

Southwest University, Chongqing 400715, PR China

E-mails: heyh@swu.edu.cn (for Y.-H. He); guanzhi@swu.edu.cn (for Z. Guan)

Table of contents

1. Analytical methods	2
2. Extra information for optimization of the reaction conditions	2
3. Characterization data of the products	4
4. ¹ H NMR and ¹³ C NMR spectra of the products	11
5. HRMS spectra of new compounds	28
6. References	

1. Analytical methods

Reactions were monitored by thin-layer chromatography (TLC) with Haiyang GF254 silica gel plates (Qingdao Haiyang chemical industry Co Ltd. Qingdao, China) using UV light and vanillic aldehyde as visualizing agents. Flash column chromatography was performed using 200-300 mesh silica gel at increased pressure. ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AM 600 (600 MHz) (Bruker BioSpin AG Ltd., Beijing, China). Chemical shifts were reported in ppm from TMS with the solvent resonance as the internal standard. Data were reported as follows: chemical shifts (δ) in ppm, coupling constants (J) in Hz, and solvent (CDCl₃). High-resolution mass spectra were obtained by using ESI ioniza-tion sources (Varian 7.0T FTICR-MS).

2. Extra information for optimization of the reaction conditions

	H O OEt ·	+ N H 2a	12 W fluorescent bulb Ru(bpy) ₃ Cl ₂ (x mol%) CALB, MeCN, rt, 24 h	H N 3aa	+
Entry		Ru(bpy) ₃ Cl ₂ (x mol%)	Yield (%) ^b	
_	1		1	66	
	2		2	70	
	3		3	71	
	4		4	73	
	5		5	75	
	6		7	79	
	7		10	76	

Supplementary Table S1 Effect of photocatalyst loading on the model reaction ^a

^a Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), MeCN (1 mL, containing 1.59% water), Ru(bpy)₃Cl₂ (1-10

mol%) and CALB (114 U) under irradiation of 12 W fluorescent bulb at rt for 24 h.

^b Determined by HPLC.

H O OEt +	12 W fluorescent bulb Ru(bpy) ₃ Cl ₂ (1 mol%) CALB, MeCN, rt, 24 h	H 3aa
Entry	Molar ratio (1a : 2a)	Yield (%) ^b
1	1:1	48
2	1:1.5	66
3	1:2	80
4	1:2.5	74
5	1:3	72
6	1.5 : 1	88
7	2:1	75
8	2.5 : 1	72
9	3:1	73

Supplementary Table S2 Effect of molar ratio of substrates on the model reaction ^a

^a Reaction conditions: 1a (0.2-0.6 mmol), 2a (0.2-0.6 mmol), MeCN (1 mL, containing 1.59% water), Ru(bpy)₃Cl₂

(1 mol%) and CALB (114 U) under irradiation of 12 W fluorescent bulb at rt for 24 h.

^b Determined by HPLC.

H O OEt +		12 W fluorescent bulb Ru(bpy) ₃ Cl ₂ (1 mol%) ➤	H NH
1a	п 2а	CALB, MeCN, rt, 24 h	3aa
Entry	Enzyme loading (U)		Yield (%) ^b
1		38	29
2		76	59
3		114	88
4		152	90
5		190	95
6		228	79

Supplementary Table S3 Effect of enzyme loading on the model reaction ^a

^a Reaction conditions: 1a (0.3 mmol), 2a (0.2 mmol), MeCN (1 mL, containing 1.59% water), Ru(bpy)₃Cl₂ (1

mol%) and CALB (38-228 U) under irradiation of 12 W fluorescent bulb at rt for 24 h.

^b Determined by HPLC.

3. Characterization data of the products

N-((1H-indol-3-yl)methyl)-4-methylaniline (3aa)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 8.02 (br, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.23 – 7.18 (m, 1H), 7.17 – 7.10 (m, 2H), 7.01 (d, J = 8.2 Hz, 2H), 6.64 (d, J = 8.4 Hz, 2H), 4.72 (br, 1H), 4.45 (s, 2H), 2.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 146.4, 136.5, 129.8, 126.9, 126.6, 122.7, 122.4, 119.8, 119.0, 114.4, 113.2, 111.3, 40.5, 20.4. HRMS (ESI) m/z 235.1240 (M - H⁺), Cal. C₁₆H₁₅N₂, 235.1240.

N-((1*H*-indol-3-yl)methyl)aniline (3ba)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.93 (br, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.30 - 7.27 (m, 3H), 7.24 - 7.22 (m, 2H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.78 (d, *J* = 8.1 Hz, 2H), 4.83 (br, 1H), 4.55 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 148.6, 136.6, 129.3, 126.9, 122.9, 122.5, 119.8, 119.1, 117.5, 114.2, 113.0, 111.4, 40.2. HRMS (ESI) m/z 221.1080 (M - H⁺), Cal. C₁₅H₁₃N₂, 221.1084.

N-((1*H*-indol-3-yl)methyl)-4-chloroaniline (3ca)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 7.8 Hz, 1H), 7.46 (d, *J* = 7.0 Hz, 1H), 7.31 (s, 1H), 7.24 – 7.20 (m, 3H), 7.18 – 7.16 (m, 1H), 6.68 (d, *J* = 7.8 Hz, 2H), 4.82 (br, 1H), 4.52 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 147.1, 136.7, 129.1, 126.9, 123.0, 122.6, 122.0, 119.9, 119.0, 116.4, 114.0, 111.6, 40.3. HRMS (ESI) m/z 255.0698 (M - H⁺), Cal. C₁₅H₁₂ClN₂, 255.0694.

4-methyl-*N*-((7-methyl-1*H*-indol-3-yl)methyl)aniline (3ab)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 8.00 (br, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.21 (s, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 7.08 – 7.04 (m, 3H), 6.67 (d, *J* = 8.3 Hz, 2H), 4.49 (s, 2H), 2.53 (s, 3H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 146.4, 136.1, 129.8, 129.7, 126.6, 126.3, 122.9, 122.3, 120.0, 116.7, 115.3, 113.1, 40.6, 20.4, 16.5. HRMS (ESI) m/z 249.1399 (M - H⁺), Cal. C₁₇H₁₇N₂, 249.1397.

N-((7-methyl-1*H*-indol-3-yl)methyl)aniline (3bb)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 8.00 (br, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.25 – 7.23 (m, 2H), 7.21 (s, 1H), 7.12 (d, J = 7.4 Hz, 1H), 7.09 – 7.07 (m, 1H), 6.78 (t, J = 7.3 Hz, 1H), 6.75 (d, J = 8.3 Hz, 2H), 4.52 (s, 2H), 2.54 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 148.6, 136.1, 129.3, 126.3, 122.9, 122.4, 120.5, 120.0, 117.4, 116.7, 114.6, 112.9, 40.2, 16.5. HRMS (ESI) m/z 235.1241 (M - H⁺), Cal. C₁₆H₁₅N₂, 235.1240.

4-chloro-*N*-((7-methyl-1*H*-indol-3-yl)methyl)aniline (3cb)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 8.03 (br, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.20 (s, 1H), 7.17 (d, *J* = 8.7 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.09 – 7.07 (m, 1H), 6.64 (d, *J* = 4.8 Hz, 2H), 4.48 (s, 2H), 2.54 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 147.1, 136.1, 129.0, 126.2, 123.0, 122.4, 122.4, 121.9, 120.1, 116.6, 116.3, 114.0, 40.3, 16.5. HRMS (ESI) m/z 269.0853 (M - H⁺), Cal. C₁₆H₁₄ClN₂, 269.0851.

4-methyl-*N*-((5-methyl-1H-indol-3-yl)methyl)aniline (3ac)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.98 (br, 1H), 7.50 (s, 1H), 7.29 (d, *J* = 4.0 Hz, 1H), 7.16 (s, 1H), 7.09 (d, *J* = 7.9 Hz, 1H), 7.06 (d, *J* = 8.2 Hz, 2H), 6.68 (d, *J* = 8.2 Hz, 2H), 4.46 (s, 2H), 2.49 (s, 3H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 146.4, 134.8, 129.7, 129.0, 127.0, 126.6, 124.0, 122.8, 118.6, 113.3, 113.1, 110.9, 40.5, 21.4, 20.4. HRMS (ESI) m/z 249.1395 (M -H⁺), Cal. C₁₇H₁₇N₂, 249.1397.

N-((5-methyl-1H-indol-3-yl)methyl)aniline (3bc)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.99 (br, 1H), 7.50 (s, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.25 – 7.24 (m, 2H), 7.16 (s, 1H), 7.10 (d, J = 8.1 Hz, 1H), 6.75 (d, J = 8.1 Hz, 2H), 6.66 (d, J = 8.1 Hz, 1H), 4.48 (s, 2H), 2.50 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 148.6, 134.8, 129.3, 129.1, 127.0, 124.0, 122.9, 118.6, 117.4, 113.1, 112.9, 110.9, 40.1, 21.4. HRMS (ESI) m/z 237.1395 (M + H⁺), Cal. C₁₆H₁₇N₂, 237.1386.

4-chloro-N-((5-methyl-1H-indol-3-yl)methyl)aniline (3cc)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 8.00 (br, 1H), 7.47 (s, 1H), 7.31 (d, *J* = 8.3 Hz, 1H), 7.18 – 7.16 (m, 3H), 7.09 (d, *J* = 7.9 Hz, 1H), 6.64 (d, *J* = 8.6 Hz, 2H), 4.44 (s, 2H), 2.49 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 147.1, 134.8, 129.2, 129.0, 126.9, 124.1, 122.8, 118.5, 116.2, 114.1, 113.9, 111.0, 40.2, 21.4. HRMS (ESI) m/z 269.0844 (M - H⁺), Cal. C₁₆H₁₄ClN₂, 269.0851.

N-((5-methoxy-1H-indol-3-yl)methyl)-4-methylaniline (3ad)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 8.00 (br, 1H), 7.28 (d, *J* = 2.8 Hz, 1H), 7.17 (s, 1H), 7.12 (s, 1H), 7.06 (d, *J* = 8.2 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 1H), 6.69 (d, *J* = 8.3 Hz, 2H), 4.45 (s, 2H), 3.87 (s, 3H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 154.3, 146.5, 131.6, 129.7, 127.2, 126.6, 123.4, 113.2, 112.8, 112.0, 100.8, 55.9, 40.5, 20.4. HRMS (ESI) m/z 265.1343 (M - H⁺), Cal. C₁₇H₁₇N₂O, 265.1346. *N*-((5-methoxy-1H-indol-3-yl)methyl)aniline (3bd)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 8.01 (br, 1H), 7.29 (s, 1H), 7.24 (m, 2H), 7.17 (s, *J* = 2.1 Hz, 1H), 7.13 (s, *J* = 2.2 Hz, 1H), 6.93 (d, *J* = 8.8 Hz, 1H), 6.76 (d, *J* = 7.8 Hz, 2H), 6.65 (d, *J* = 7.8 Hz, 1H), 4.47 (s, 2H), 3.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 154.3, 148.7, 129.3, 127.2, 123.5, 117.4, 115.1, 113.0, 112.8, 112.0, 100.8, 56.0, 40.2. HRMS (ESI) m/z 253.1337 (M - H⁺), Cal. C₁₆H₁₇N₂O, 253.1336.

4-chloro-*N*-((5-methoxy-1H-indol-3-yl)methyl)aniline (3cd)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 8.01 (br, 1H), 7.17 – 7.16 (m, 3H), 7.09 (d, *J* = 1.8 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 1H), 6.65 (d, *J* = 8.8 Hz, 2H), 4.43 (s, 2H), 3.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 154.4, 147.1, 129.1, 127.1, 123.5, 123.1, 116.2, 114.1, 112.8, 112.1, 100.7, 56.0, 40.3. HRMS (ESI) m/z 285.0798 (M - H⁺), Cal. C₁₆H₁₄CIN₂O, 285.0800.

N-((5-bromo-1H-indol-3-yl)methyl)-4-methylaniline (3ae)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 8.17 (br, 1H), 7.83 (s, 1H), 7.32 (d, *J* = 8.6 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.19 (s, 1H), 7.05 (d, *J* = 8.1 Hz, 2H), 6.66 (d, *J* = 8.2 Hz, 2H), 4.44 (s, 2H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl3) δ 146.1, 135.1, 129.8, 128.6, 127.0, 125.2, 123.8, 121.7, 114.1, 113.2, 113.0, 112.7, 40.3, 20.4. HRMS (ESI) m/z 315.0498 (M + H⁺), Cal. C₁₆H₁₆BrN₂, 315.0492.

N-((5-bromo-1H-indol-3-yl)methyl)aniline (3be)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 8.16 (br, 1H), 7.84 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.29 - 7.25 (m, 3H), 7.20 (s, 1H), 6.79 (t, *J* = 7.3 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 2H), 4.46 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 148.3, 135.1, 129.3, 128.5, 125.3, 123.9, 121.7, 117.7, 113.8, 113.1, 112.7, 40.0. HRMS (ESI) m/z 301.0341 (M + H⁺), Cal. C₁₅H₁₄BrN₂, 301.0335.

4-methyl-N-((6-methyl-1H-indol-3-yl)methyl)aniline (3af)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.95 (br, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.20 (s, 1H), 7.12 (s, 1H), 7.06 (d, *J* = 8.2 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.67 (d, *J* = 8.3 Hz, 2H), 4.47 (s, 2H), 2.51 (s, 3H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 146.4, 136.9, 132.2, 129.7, 126.6, 122.0, 121.5, 118.7, 114.1, 113.1, 111.2, 40.5, 21.7, 20.4. HRMS (ESI) m/z 251.1549 (M + H⁺), Cal. C₁₇H₁₉N₂, 251.1543. *N*-((6-methyl-1H-indol-3-yl)methyl)aniline (3bf)

Brown liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.94 (br, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.26 – 7.23 (m, 2H), 7.20 (s, 1H), 7.12 (s, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.74 (d, J = 7.7 Hz, 2H), 6.66 (t, J = 7.2 Hz, 1H), 4.49 (s, 2H), 2.51 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 148.6, 136.9, 132.3, 129.3, 122.0, 121.6, 118.7, 117.4, 115.2, 112.9, 111.2, 111.0, 40.2, 21.7. HRMS (ESI) m/z 237.1389 (M + H⁺), Cal. C₁₆H₁₇N₂, 237.1386.

ethyl 2-(1H-indol-3-yl)-2-(p-tolylamino)acetate (4)¹

Yellow liquid; ¹H NMR (600 MHz, CDCl3) δ 8.15 (s, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.23 – 7.12 (m, 3H), 6.95 (d, J = 8.1 Hz, 2H), 6.56 (d, J = 8.2 Hz, 2H), 5.36 (s, 1H), 4.18 (ddd, J = 75.3, 10.8, 7.1 Hz, 2H), 2.21 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl3) δ 172.7, 144.3, 136.5, 129.8, 127.4, 125.9, 123.1, 122.5, 120.0, 119.6, 113.7, 112.8, 111.4, 61.5, 54.7, 20.4, 14.2.

4. ¹H NMR and ¹³C NMR spectra of the products

3ba

3bb

3ac

17

3bc

3bd

3cd

3af

3bf

5. HRMS spectra of new compounds

3aa

3ba

3ab

3ac

3cb

3bc

3bd

3ae

34

3af

3bf

6. References

1 S.-Q. Zhu and M. Rueping, *Chem. Commun.*, 2012, **48**, 11960.