Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

An efficient utilization of the photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system through narrow band gap CdS photocatalyst

Xiaofeng Ning^a, Sugang Meng^{a*}, Xianliang Fu^a, Xiangju Ye^b, Shifu Chen^{a,b*}

- ^a Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000,
 People's Republic of China.
- b Department of Chemistry, Anhui Science and Technology University, Anhui Fengyang, 233100, People's Republic of China.
- * Corresponding author, Tel: +86-550-6732001, Fax: +86-550-6732001. E-mail: chshifu@chnu.edu.cn

Fig. S1 The activity of CdS-G for phptocatalytic (a): oxidation of benzyl alcohol into benzaldehyde and reduction of nitrobenzene into aniline; (b): oxidation of benzyl alcohol into benzaldehyde and reduction p-chloronitrobenzene into p-chloroaniline under visible light irradiation for 4 h.

Fig. S2 The cyclic voltammogram of (a) pMBA, (b) pMBAD and (c) NB with different concentrations (0.1, 0.2, and 0.5 mmol/L), (d) Mott–Schottky plots for the CdS-G electrodes.

Fig. S3 The GC spectra of (a) the reaction system was irradiated for 0.5 h and (b) BTF solvent contained NSB to verify the existence of NSB in the reaction process.

- (1): Benzotrifluoride solvent (BTF);
- (2): Impurity in BTF solvent;
- (3): Nitrosobenzene (NSB);
- (4): Aniline (AL);
- (5): Nitrobenzene (NB);
- (6): p-methoxybenzyl alcohol (pMBA);
- (7) p-methoxybenzaldehyde (pMBAD).