# Supporting information for:

# Calcium Tungstate: A Convenient Recoverable Catalyst for Hydrogen Peroxide Oxidation

Catlin M. Williamson, Peter Stonehouse and Keith S. Kyler\*

Address: Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, 15707

Keith.kyler@iup.edu

#### Contents

| 1. | General Procedure for the Oxidation of Amines                          | <br>S2     |
|----|------------------------------------------------------------------------|------------|
| 2. | General Procedure for the Oxidation of Alkenes                         | <br>S2     |
| 3. | General Procedure for the Oxidation of Alcohols                        | <br>S2     |
| 4. | General Procedure for the Oxidation of Sulfides                        | <br>S2     |
| 5. | UV-Visible spectral data for $Na_2WO_4$ , $Na_2WO_4/H_2O_2$ , and      | <br>S3-S4  |
|    | CaWO <sub>4</sub> /H <sub>2</sub> O <sub>2</sub>                       |            |
| 6. | Photographs and IR Spectra of CaWO4 before and after                   | <br>S5-S6  |
|    | Five cycles of Oxidation                                               |            |
| 7. | <sup>1</sup> H & <sup>13</sup> C-NMR and Infrared spectra of Compounds | <br>S7-S36 |
|    |                                                                        |            |

1. General Procedure for the Oxidation of Amines: To 2.2 L of 30% H<sub>2</sub>O<sub>2</sub> (12.4 mol) was added 3.4 g (0.12 mol) of CaWO<sub>4</sub>. The mixture was warmed to 45 °C and the solid dissolved to produce a yellow solution. Then was added dropwise over a 30 min period, 1 kg (2.3 mol) of p-toluidine while maintaining the temperature below 50 °C. After complete addition, the mixture was warmed to 95 °C for about 1 h at which point the yellow color of the aqueous phase disappeared and the colorless CaWO<sub>4</sub> precipitated. The mixture was cooled to room temperature, and the organic phase was separated and distilled to af-ford, 1.1 kg (98%) of p-nitrotoluene,(<u>2</u>), mp 49-51 °C, whose <sup>1</sup>H-NMR and IR spectra were consistent with reported data. The aqueous phase was filtered and the CaWO<sub>4</sub> (3.4g, >99%+) was recovered.

2. General Procedure for the Oxidation of Alkenes. To 45.0 mL of 30%  $H_2O_2$  (0.4 mol) and 45 mL of t-butanol was added 0.288 g (1 mmol) of CaWO<sub>4</sub>. The mixture was warmed to 45 °C and the solid dissolved to produce a yellow solution. Then was added 9.4 g (0.10 mol) of norbornene and the mixture was stirred vigorously for 4h at 65 °C. The mixture was was then warmed to 95 °C for approximately 10 min at which point the yellow color of the aqueous phase disappeared and the colorless CaWO<sub>4</sub> precipitated. The mixture was cooled to room temperature, and organic product was extracted with ethyl acetate. The organic phase was dried over anhydrous MgSO<sub>4</sub>, and evaporated to afford 10.55 g (98%) of *exo*-2,3-epoxynorbornane (<u>5</u>). <sup>1</sup>H-NMR (CDCl<sub>3</sub>) d 0.92 (2H, d), 1.32 (4H, d), 2.20 (2H, br s) and 3.18 (2H, br s). Decoupled <sup>13</sup>C-NMIR (CDCl<sub>3</sub>) d 24.4, 25.5, 34.2, 51.0. The aqueous phase was filtered and the CaWO<sub>4</sub> (0.287g, 99%<sup>+</sup>) was recovered.

3. General Procedure for the Oxidation of Alcohols. To 453 mL of 30% H<sub>2</sub>O<sub>2</sub> (4.0 mol) and 400 mL of methanol was added 2.88 g (0.01 mol) of CaWO<sub>4</sub>. The mixture was warmed to 45 °C and the solid dissolved to produce a yellow solution. Then was added 100 g (1.0 mol) of cyclcohexanol and the mixture was stirred vigorously for 20 h at 65 - 70 °C. The mixture was was then warmed to 95 °C for approximately 1 h at which point the yellow color of the aqueous phase disappeared and the colorless CaWO<sub>4</sub> precipitated. The mixture was cooled to room temperature, and organic layer was separated and distilled to afford 95 g (97%) of cyclohexanone, (**6**), bp 152-156 °C, lit., 156 °C.

4. **General Procedure for the Oxidation of suflides**. To 22 mL of 30%  $H_2O_2$  (0.20 mol) and 20 mL of t-butanol was added 0.288 g (0.001 mol) of CaWO<sub>4</sub>. The mixture was warmed to 45 °C and the solid dissolved to produce a yellow solution. The mixture was then cooled to 25 °C, and was added 15.2 g (0.1 mol) of isopropylphenyl sulfide. The mixture was stirred vigorously for 0.5 h at 25 °C. The mixture was was then warmed to 95 °C for approximately 1 h at which point the yellow color of the aqueous phase disappeared and the colorless CaWO<sub>4</sub> precipitated. The mixture was cooled to room temperature, and 50 mL of ethyl acetate was added then the organic layer was separated and dried over anhydrous MgSO<sub>4</sub>. Evaporation gave a crude colorless solid which was titurated with cold hexane, filtered, then dried to afford 17.7 g (96%)= of a colorless solid, (<u>10</u>). IR (KBr) 3094, 2977, 1305, 1144, and 730 cm<sup>-1</sup>. GC-MS; 184 (M<sup>+</sup>), 142 (78), 78 (100), 51 (22), 43 (36).

5. UV-Visible Spectra for Tungstate Solutions: All spectra were recorded at 25 °C on a doublebeam Perkin-Elmer Model 552A UV/Vis Spectrophotometer using either water or  $H_2O_2(aq)$  as blanks where appropriate. Data were recorded between 500 – 190 nm.



#### a) 1.0 mM Na<sub>2</sub>WO<sub>4</sub> in water

b) 1.0 mM Na<sub>2</sub>WO<sub>4</sub> in 8% H<sub>2</sub>O<sub>2</sub>



c) 1.0 mM CaWO<sub>4</sub> in 8% H<sub>2</sub>O<sub>2</sub>



- 6. Photographs and IR Spectra of CaWO4 before and after Five cycles of Oxidation
  - a) CaWO<sub>4</sub> prior to oxidations



b)  $CaWO_4$  after five cycles of oxidations





c) Overlay of IR Spectra of CaWO<sub>4</sub> before (A) and after (B) five cycles of oxidation

7. All NMR spectra were obtained on a Bruker 300 MHz spectrometer. All Infrared spectra were obtained on a Perkin Elmer Frontier FTIR.





Nitrobenzene: <sup>13</sup>C-NMR (CDCl<sub>3</sub>)







4-nitrotoluene: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)



## 4-nitrotoluene: <sup>13</sup>C-NMR (CDCl<sub>3</sub>)



#### 4-nitrotoluene: IR



## 3-nitroisoxazole: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)



## 3-nitroisoxazole: <sup>13</sup>C-NMR (CDCl<sub>3</sub>)



#### 3-nitroisoxazole: IR



# Cyclohexene oxide: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)



# Cyclohexene oxide: <sup>13</sup>C-NMR (CDCl<sub>3</sub>)



S17

# Cyclohexene oxide: IR



# Expoxynorbornane: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)



# Epoxynorbonane: <sup>13</sup>C-NMR (CDCl<sub>3</sub>)



## Epoxynorbornane: IR



# Cyclohexanone: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)



# Cyclohexanone: <sup>13</sup>C-NMR (CDCl<sub>3</sub>)



# Cyclohexanone: IR







## 3-pentanone: <sup>13</sup>C-NMR (CDCl<sub>3</sub>)



## 3-pentanone: IR



## 2,3-Epoxygeraniol: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)



## 2,3-Epoxygeraniol: <sup>13</sup>C-NMR (CDCl<sub>3</sub>)



## 2,3-Epoxygeraniol: IR



## Ethylphenylsulfone: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)



Ethylphenylsulfone: <sup>13</sup>C-NMR (CDCl<sub>3</sub>)



# Ethylphenylsulfone: IR



Isopropylphenylsulfone: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)



Isopropylphenylsulfone: <sup>13</sup>C-NMR (CDCl<sub>3</sub>)



# Isopropylphenylsulfone: IR

