Understanding the Cleavage of Inter- and Intra-molecular Linkages in Corncob Residue for Utilization of Lignin to Produce Monophenols

Zhicheng Jiang, Hui Zhang, Ting He, Xiaoyan Lv, Jian Yi, Jianmei Li, Changwei Hu* Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China.

Lists of Tables and Figures

List of Tables

 Table S1 Assignment of absorption peaks in FTIR spectra of solid samples.

 Table S2 Resonance assignment of ¹³C CPMAS spectra of corncob residue and reaction residues.

Table S3 Effect of the ratio of H_2O/THF on the molecular weights distribution of oligomers in liquid products.

 Table S4 Assignment of main lignin ¹³C-¹H correlation signals in HSQC spectra of liquid fraction.

Table S5 Effect of different salts on the molecular weights distribution of oligomers in liquid products.

Table S6 The yield of monophenols by the further reaction of the liquid fraction from step-one with different salts.

List of Figures

Fig. S1 SEM micrographs of corncob residue and reaction residues with different amount of Na_2CO_3 added.

Fig. S2 XRD of corncob residue and reaction residues with different amount of Na₂CO₃ added.

Fig. S3 ¹³C CPMAS solid-state NMR spectra of corncob residue and reaction residues.

Fig. S4 Effect of reaction conditions (A. Reaction temperature; B. Reaction time; C. The ratio of H_2O/THF with Na_2CO_3) on the conversion of corncob residue.

Fig. S5 Effect of alkaline salts on the conversion of lignin and cellulose in corncob residue.

Fig. S6 FTIR spectra (1800-800 cm⁻¹) of liquid fraction influenced by the ratio of H_2O/THF without Na_2CO_3 .

Fig. S7 FTIR spectra (1800-800 cm⁻¹) of liquid fraction influenced by different salts.

Fig. S8 2D HSQC NMR spectra (aliphatic side-chain region) of liquid fraction.

Fig. S9 2D HSQC NMR spectra (A aromatic region; B aliphatic side-chain region) of liquid fraction.

Fig. S10 UV spectra (260-380 nm) of liquid fraction influenced by different salts.

Tables

Wavenumbers (cm ⁻¹)	Assignment		
1709	C-C stretching vibration in aromatic skeleton (lignin)		
1605	Aromatic ring vibrations (lignin)		
1515	Aromatic ring vibrations (lignin)		
1374	Aliphatic C-H stretching (cellulose)		
1166	C-O-C stretching at β -(1-4)-glycosidic (cellulose)		
1113	C=O/C-O-C stretching glucose ring stretching vibration (cellulose)		
1057	C-O stretching vibrations (cellulose)		
897	C-O-C vibration at β -(1-4)-glycosidic(cellulose)		

 Table S1 Assignment of absorption peaks in FTIR spectra of solid samples.²⁶⁻²⁸

 Table S2 Resonance assignment of ¹³C CPMAS spectra of corncob residue and reaction residues.

Peak No.	δ(ppm)	Assignment			
1	151	Lignin: S _{3(e)} , S _{5(e)}			
2	147.5	Lignin: S _{3(ne)} , S _{5(ne)} ,			
		G _{3(ne, e)} , G _{4(ne, e)}			
3	138	Lignin: S _{1(e)} , S _{4(e)} , G _{1(e)}			
4	134	Lignin: S _{1(ne)} , S _{4(ne)} , G _{1(ne)}			
5	119	Lignin: G ₆			
6	112	Lignin: G ₅ , G ₆ , S ₂ , S ₆			
7	108	Cellulose: C ₁			
8	92	Cellulose: C ₄ (ordered)			
9	87	Cellulose: C ₄ (disordered)			
		Lignin: C _β			
10	78	Cellulose: C ₂ , C ₃ , C ₅			
		Lignin: C_{α}			
11	74	Cellulose: C_2 , C_3 , C_5			
12	68	Cellulose: C ₆ (ordered)			
13	65	C ₆ (disordered)			
		Lignin: C _γ			
14	58	Lignin: OCH3			
S: carbon in syringyls, G: carbon in guaiacyls, ne: in					
non-etherified arylglycerol β -aryl ethers, e: in					
etherified aryigiycerol β-aryl ethers.					

M _w	Mw	M_w/M_n		
306	233	1.31		
528	328	1.61		
560	359	1.56		
617	370	1.67		
692	368	2.10		
Reaction conditions: 4.0 g of corncob residue was added in 100 mL of solvent at 140 °C for 1 h.				
	M _w 306 528 560 617 692 g of cornc 0 °C for 1	Mw Mw 306 233 528 328 560 359 617 370 692 368 306 corncob residue 0 °C for 1 h.		

Table S3 Effect of the ratio of H_2O/THF on the molecular weights distribution of oligomers in liquid products.

 Table S4 Assignment of main lignin ¹³C-¹H correlation signals in HSQC spectra of liquid fraction.

Labels	δ _c /δ _H (ppm)	Assignment
OMe	56.0/3.74	C-H in methoyls
Aγ	59.8/3.61	C_{γ} -H $_{\gamma}$ in β -O-4' structures (A)
lγ	61.2/4.15	C_{γ} -H _{γ} in β -O-4' structures (I)
Cγ	62.6/3.71	C_{γ} -H _{γ} in phenylcoumaran substructure (C)
G ₂	111.5/6.80	C ₂ -H ₂ in guaiacyl units (G)
G′2	111.4/7.4	C_2 -H ₂ in oxidized (C_{α} =O) guaiacyl units (G)
G_5	115.3/6.68-6.99	C_5 -H ₅ in guaiacyl units (G)
G_6	119.8/6.60	C ₆ -H ₆ in guaiacyl units (G)
S _{2,6}	104.3/6.71	C _{2,6} -H _{2,6} in syringyl units (S)
S' _{2,6}	106.5/7.26	$C_{2,6}$ -H _{2,6} in (C _a =O) syringyl units (S)
S" _{2,6}	104.7/7.30	C _{2,6} -H _{2,6} in (carboxylic group) syringyl units (S)
H _{2,6}	128.2/7.19	C _{2,6} -H _{2,6} in <i>p</i> -hydroxyphenyl units (H)
HB _{2,6}	130.8/7.56	$C_{2,6}$ -H _{2,6} in oxidized (C_{α} =O) <i>p</i> -hydroxyphenyl units (HB)
PCA_{α}	143.8/7.49	C_{α} -H _{α} in p-coumaric acid (PCA)

	Salts	Mw	M _w	M _w /M _n
	Na_2CO_3	722	444	1.63
Step-one ^a	NaOH	622	281	2.22
	NaHCO₃	676	292	2.32
	K ₂ CO ₃	620	265	2.34
	Na_2CO_3	293	253	1.16
Stop two h	NaOH	290	257	1.13
Step-two [®]	NaHCO ₃	288	253	1.14
	K ₂ CO ₃	283	251	1.13

 Table S5 Effect of different salts on the molecular weights distribution of oligomers in liquid products.

Reaction conditions: ^a 4.0 g of corncob residue and salts (molar equivalent of Na⁺ or CO³⁻ in 0.5 g Na₂CO₃) were added in 100 mL of solvent (H₂O-THF: 5 : 5, v/v) at 140 °C for 1 h.

^b 100 mL of liquid fraction in step-one at 300 °C for 2 h.

Table S6 The yield^a of monophenols by the further reaction of the liquid fraction from step-one with different salts.

Monophenols		Alkaline salts ^b			
		NaHCO 3 (9.4) ^c	Na ₂ CO ₃ (12.1) ^c	K ₂ CO ₃ (12.2) ^c	NaOH (13.6) ^c
S	2,6-Dimethoxylphenol ¹	6.5	6.0	7.1	8.7
H Pher 4-Eth	Phenol ^{II}	7.2	7.4	7.4	7.2
	4-Ethylphenol	0.7	0.8	0.9	1.4
	Guaiacol III	4.6	5.2	5.3	5.8
G 4-I 4-I	4-Methylguaiacol	2.7	2.8	3.0	2.8
	4-Ethylguaiacol	0.6	0.8	0.8	1.3
2,3-Dihydrobenzofuran		0.5	0.4	0.4	0.5
Total monophenols		22.8	23.4	24.9	27.7
Selectivity (I+II+III) ^b		79.9	79.4	79.2	78.3
^a wt%, based on the lignin content in corncob residue.					

^b In step-one: Salts (molar equivalent of Na⁺ or CO₃⁻ in 0.5 g Na₂CO₃) was added in 100 mL solvent (H₂O-THF: 5 : 5, v/v). ^c Initial pH value

Reaction conditions: 100 mL of liquid fraction from step-one at 300 $^{\circ}$ C for 2 h.

Figures

Fig. S1 SEM micrographs of corncob residue and reaction residues with different amount of Na_2CO_3 added. Reaction conditions: 4.0 g of corncob residue in 100 mL of solvent (H₂O-THF: 3 : 7, v/v) at 140 °C for 1 h.

Fig. S2 XRD of corncob residue and reaction residues with different amount of Na_2CO_3 added. Reaction conditions: 4.0 g of corncob residue in 100 mL of solvent (H₂O-THF: 3 : 7, v/v) at 140 °C for 1 h.

Fig. S3 ¹³C CPMAS solid-state NMR spectra of corncob residue and reaction residues. Reaction conditions: 4.0 g of corncob residue in 100 mL of solvent (H_2O -THF: 3 : 7, v/v) at 140 °C for 1 h.

Fig. S4 Effect of reaction conditions (A. Reaction temperature; B. Reaction time; C. The ratio of H_2O/THF with Na_2CO_3) on the conversion of corncob residue. Reaction conditions: A 4.0 g of corncob residue and 1.0 g of Na_2CO_3 in 100 mL of solvent (H_2O -THF: 3 : 7, v/v) for 1 h. B 4.0 g of corncob residue and 0.5 g of Na_2CO_3 in 100 mL of solvent (H_2O -THF: 5 : 5, v/v) at 140 °C. C 4.0 g of corncob residue and 0.5 g of Na_2CO_3 in 100 mL of solvent at 140 °C for 1 h.

Fig. S5 Effect of alkaline salts on the conversion of lignin and cellulose in corncob residue and the pH value of the reaction solvent. Reaction conditions: 4.0 g of corncob residue and salt (molar equivalent of Na⁺ or CO₃²⁻ in 0.5 g of Na₂CO₃) in 100 mL of solvent (H₂O-THF: 5 : 5, v/v) at 140 °C for 1 h.

Fig. S6 FTIR spectra (1800-800 cm⁻¹) of liquid fraction influenced by the ratio of H_2O/THF without Na_2CO_3 . (A) 10 : 0; (B) 7 : 3; (C) 5 : 5; (D) 7 : 3; (E) 0 : 10. Reaction conditions: 4.0 g of corncob residue was added in 100 mL of solvent at 140 °C for 1 h.

Fig. S7 FTIR spectra (1800-800 cm⁻¹) of liquid fraction influenced by different salts. After step-one: (A) Na₂CO₃; (B) NaOH; (C) NaHCO₃; (D) K₂CO₃. After step-two: (a) Na₂CO₃; (b) NaOH; (c) NaHCO₃; (d) K₂CO₃. Reaction conditions: Step-one: 4.0 g of corncob residue and salts (molar equivalent of Na⁺ or CO³⁻ in 0.5 g Na₂CO₃) were added in 100 mL of solvent (H₂O-THF: 5 : 5, v/v) at 140 °C for 1 h. Step-two: 100 mL of liquid fraction in step-one at 300 °C for 2 h.

Fig. S8 2D HSQC NMR spectra (aliphatic side-chain region) of liquid fraction. Reaction conditions: Step-one: 4.0 g of corncob residue in 100 mL of solvent (H_2O -THF: 3 : 7, v/v) at 140 °C for 1 h. Step-two: 100 mL of liquid fraction in step-one at 300 °C for 2 h.

Fig. S9 2D HSQC NMR spectra (A aromatic region; B aliphatic side-chain region) of liquid fraction. Reaction conditions: Step-one: 4.0 g of corncob residue and salts (molar equivalent of Na⁺ or CO³⁻ in 0.5 g Na₂CO₃) were added in 100 mL of solvent (H₂O-THF: 5 : 5, v/v) at 140 °C for 1 h. Step-two: 100 mL of liquid fraction in step-one at 300 °C for 2 h.

Fig. S10 UV spectra (260-380 nm) of liquid fraction influenced by different salts. After step-one: (A) Na₂CO₃; (B) NaOH; (C) NaHCO₃; (D) K₂CO₃. After step-two: (a) Na₂CO₃; (b) NaOH; (c) NaHCO₃; (d) K₂CO₃. Reaction conditions: Step-one: 4.0 g of corncob residue and salts (molar equivalent of Na⁺ or CO³⁻ in 0.5 g Na₂CO₃) were added in 100 mL of solvent (H₂O-THF: 5 : 5, v/v) at 140 °C for 1 h. Step-two: 100 mL of liquid fraction in step-one at 300 °C for 2 h.