Supporting Information

Copper catalysed alkynylation of tertiary amines with CaC₂ via sp³ C-H activation

Siew Ping Teong, Dingyi Yu, Yin Ngai Sum, Yugen Zhang*

Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore. E-mail: ygzhang@ibn.a-star.edu.sg

General Information

All solvents and chemicals used were obtained from commercial suppliers and used directly without any pre-treatment, unless otherwise indicated. All reactions were set up under argon atmosphere unless otherwise stated.

Analytical thin layer chromatography (TLC) was performed using Merck 60 F-254 silica gel plates with visualization by ultraviolet light (254 nm) and/or I₂ stain. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV-400 (400 MHz) spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) with the residual solvent peak of tetramethylsilane used as the internal standard at 0.00 ppm. ¹H NMR data are reported in the following order: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet), coupling constants (J, Hz), integration and assignment. High resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF-QII spectrometer.

General Experimental Procedure

Preparation of Propargylamines

$$R_{2} \xrightarrow{R_{1}} Ca \xrightarrow{CuBr (0.1 mmol)}{DEAD (1.5 mmol)} R_{2} \xrightarrow{R_{1}} C \xrightarrow{C} C \xrightarrow{R_{1}} R_{2} \xrightarrow{R_{2}} N \xrightarrow{C} C \xrightarrow{C} C$$

In a 8 mL pressure vial, CaC_2 (2.5 mmol) and CuBr (0.1 mmol) were added. The vial was then purged and refilled with argon thrice before $CH_3CN + 2$ vol% H_2O (5 mL), aliphatic amine (0.5 mmol) and DEAD (1.5 mmol) were added to the vial using a syringe. The reaction was stirred at 80 °C for 16 h, cooled to room temperature before it was diluted with H_2O (10 mL) and extracted with diethyl ether (3 x 10 mL). The combined organic layer was dried over anhydrous Na_2SO_4 and concentrated *in vacuo*. The residue was further purified by column chromatography on silica gel to afford the corresponding aliphatic propargylamine. For aromatic amines, CH_3CN (5 mL) and t-BuOOH (2 mmol) were used instead. The NMR spectra data of compounds $3b^1$, $3f^2$, $3g^3$ and $5b^4$ are available in the literature and are referenced accordingly.

N-methyl-*N*-(prop-2-yn-1-yl)cyclohexanamine (3a)

This compound was prepared according to general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/8) to give the product as a light yellow liquid (139 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 3.42 (d, *J* = 2.4 Hz, 2H, CH₂), 2.39 – 2.31 (m, 1H, CH), 2.35 (s, 3H, CH₃), 2.19 (t, *J* = 2.5 Hz, 1H, C=CH), 1.92 – 1.90 (m, 2H, CH₂), 1.78 – 1.75 (m, 2H, CH₂), 1.62 – 1.59 (m, 1H, CH₂), 1.31 – 1.08 (m, 5H, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 79.8, 72.6, 60.7, 42.9, 38.5, 29.8, 26.0, 25.5; HRMS (EI) *m/z* calcd. for C₁₀H₁₇N 151.1361; found 151.1358

N-cyclohexyl-*N*-(prop-2-yn-1-yl)cyclohexanamine (3b)¹

This compound was prepared according to general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/10) to give the product as a light yellow liquid (104 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 3.47 (d, J = 2.4 Hz, 2H, CH₂), 2.78 – 2.72

(tt, J = 10.8, 3.3 Hz, 2H, CH), 2.12 (t, J = 2.4 Hz, 1H, C=CH), 1.85 – 1.75 (m, 8H, CH₂), 1.62 – 1.59 (m, 2H, CH₂), 1.34 – 1.05 (m, 10H, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 83.9, 71.0, 57.3, 34.8, 31.2, 26.3, 26.2

N-methyl-*N*-(prop-2-yn-1-yl)hexan-1-amine (3e)

This compound was prepared according to general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/10) to give the product as a light yellow liquid (54 mg, 71%). ¹**H NMR** (400 MHz, CDCl₃) δ 3.34 (d, *J* = 2.4 Hz, 2H, CH₂), 2.39 (t, *J* = 7.6 Hz, 2H, CH₂), 2.30 (s, 3H, CH₃), 2.21 (t, *J* = 2.4 Hz, 1H, C=CH), 1.47 – 1.40 (m, 2H, CH₂), 1.32 – 1.26 (m, 6H, CH₂), 0.91 – 0.85 (m, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 78.7, 73.0, 55.8, 45.5, 41.8, 31.8, 27.6, 27.1, 22.7, 14.1; HRMS (EI) *m/z* calcd. for C₁₀H₁₉N 153.1518; found 153.1511

N-benzyl-*N*-methylprop-2-yn-1-amine (3f)²

This compound was prepared according to general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/16) to give the product as a light yellow liquid (63 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.24 (m, 5H, Ar-H), 3.57 (s, 2H, CH₂), 3.31 (d, *J* = 2.4 Hz, 2H, CH₂), 2.35 (s, 3H, CH₃), 2.28 (t, *J* = 2.4 Hz, 1H, C=CH); ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 129.2, 128.3, 127.3, 78.5, 73.5, 60.0, 44.8, 41.8

3-(methyl(prop-2-yn-1-yl)amino)propanenitrile (3g)³

This compound was prepared according to general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/5) to give the product as a light yellow oil (45 mg, 74%). ¹**H NMR** (400 MHz, CDCl₃) δ 3.42 (d, *J* = 2.4 Hz, 2H, CH₂), 2.78 (t, *J* = 6.9 Hz, 2H, CH₂), 2.51 (t, *J* = 7.0 Hz, 2H, CH₂), 2.37 (s, 3H, CH₃), 2.27 (t, *J* = 2.4 Hz, 1H, C=CH); ¹³**C NMR** (101 MHz, CDCl₃) δ 118.6, 77.5, 73.9, 50.8, 45.4, 41.4, 16.6

1-ethynyl-2-methyl-1,2,3,4-tetrahydroisoquinoline (3h)

This compound was prepared according to general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/6) to give the product as an orange oil (68 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.10 (m, 4H, Ar-H), 4.51 (br s, 1H, CH),

3.02 - 2.92 (m, 2H, CH₂), 2.89 - 2.80 (m, 1H, CH₂), 2.74 - 2.65 (m, 1H, CH₂), 2.56 (s, 3H, CH₃), 2.41 (d, J = 2.3 Hz, 1H, C=CH); ¹³C NMR (101 MHz, CDCl₃) δ 134.8, 133.4, 129.0, 127.4, 127.1, 126.0, 81.6, 74.2, 56.1, 48.2, 43.5, 28.7; HRMS (EI) *m/z* calcd. for C₁₂H₁₃N 171.1048; found 171.1042

1-(prop-2-yn-1-yl)piperidine (3i)

This compound was prepared according to general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/4) to give the product as a light yellow liquid (44 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 3.28 (d, *J* = 2.5 Hz, 2H, CH₂), 2.58 – 2.43 (m, 4H, CH₂), 2.23 (t, *J* = 2.4 Hz, 1H, C=CH), 1.65 – 1.59 (m, 4H, CH₂), 1.48 – 1.39 (m, 2H, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 79.3, 72.8, 53.2, 47.6, 25.9, 23.9; HRMS (EI) *m/z* calcd. for C₈H₁₃N 123.1048; found 123.1048

Ethyl 1-(prop-2-yn-1-yl)piperidine-4-carboxylate (3j)

This compound was prepared according to general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/2) to give the product as a light yellow liquid (76 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 4.13 (q, *J* = 7.1 Hz, 2H, CH₂), 3.31 (d, *J* = 2.4 Hz, 2H, CH₂), 2.91 – 2.83 (dt, *J* = 11.9, 3.8 Hz, 2H, CH₂), 2.32 – 2.22 (m, 3H, overlapping CH₂, CH), 2.25 (t, *J* = 2.4 Hz, 1H, C≡CH), 1.99 – 1.90 (m, 2H, CH₂), 1.85 – 1.73 (m, 2H, CH₂), 1.25 (t, *J* = 7.1 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 78.8, 73.2, 60.4, 51.6, 47.1, 40.7, 28.2, 14.2; HRMS (EI) *m/z* calcd. for C₁₁H₁₇NO₂ 195.1259; found 195.1253

4-chloro-1-(prop-2-yn-1-yl)piperidine (3k)

This compound was prepared according to general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/2) to give the product as a light yellow liquid (55 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 4.04 (br s, 1H, CH), 3.29 (d, *J* = 2.5 Hz, 2H, CH₂), 2.81 – 2.78 (m, 2H, CH₂), 2.46 – 2.41 (m, 2H, CH₂), 2.25 (t, *J* = 2.5 Hz, 1H, C=CH), 2.14 – 2.10 (m, 2H, CH₂), 1.97 – 1.90 (m, 2H, CH₂); ¹³C NMR (101 MHz,

CDCl₃) δ 78.7, 73.3, 56.7, 49.9, 46.9, 35.4; HRMS (EI) *m/z* calcd. for C₈H₁₂ClN 157.0658; found 157.0654

N-methyl-*N*-(prop-2-yn-1-yl)aniline (5a)

This compound was prepared according to general procedure and isolated by column chromatography (toluene/hexane = 1/4) to give the product as a yellow oil (54 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 2H, Ar-H), 6.90 – 6.79 (m, 3H, Ar-H), 4.06 (d, *J* = 2.3 Hz, 2H, CH₂), 2.98 (s, 3H, CH₃), 2.17 (t, *J* = 2.4 Hz, 1H, C=CH); ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 129.1, 118.4, 114.3, 79.3, 72.0, 42.5, 38.6; HRMS (EI) *m/z* calcd. for C₁₀H₁₁N 145.0892; found 145.0887

N,4-dimethyl-*N*-(prop-2-yn-1-yl)aniline (5b)⁴

This compound was prepared according to general procedure and isolated by column chromatography (toluene/hexane = 1/1) to give the product as a yellow oil (48 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, J = 8.4 Hz, 2H, Ar-H), 6.79 (d, J = 8.4 Hz, 2H, Ar-H), 4.01 (d, J = 2.3 Hz, 2H, CH₂), 2.93 (s, 3H, CH₃), 2.26 (s, 3H, CH₃), 2.15 (t, J = 2.3 Hz, 1H, C=CH); ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 129.7, 127.9, 114.9, 79.3, 72.1, 43.0, 38.9, 20.4

4-(tert-butyl)-*N*-methyl-*N*-(prop-2-yn-1-yl)aniline (5c)

This compound was prepared according to general procedure and isolated by column chromatography (toluene/hexane = 1/2) to give the product as a yellow oil (48 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.9 Hz, 2H, Ar-H), 6.84 (d, *J* = 8.9 Hz, 2H, Ar-H), 4.04 (d, *J* = 2.4 Hz, 2H, CH₂), 2.97 (s, 3H, CH₃), 2.19 (t, *J* = 2.4 Hz, 1H, C=CH), 1.31 (s, 9H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 146.8, 141.1, 126.0, 114.2, 79.5, 72.1, 42.6, 38.8, 33.9, 31.5; HRMS (EI) *m/z* calcd. for C₁₄H₁₉N 201.1518; found 201.1510

2,6-diisopropyl-*N*-methyl-*N*-(prop-2-yn-1-yl)aniline (5d)

This compound was prepared according to general procedure and isolated by column chromatography (toluene/hexane = 1/2) to give the product as a yellow oil (58 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.16 (m, 1H, Ar-H), 7.10 – 7.08 (m, 2H, Ar-H), 3.82 (d, J = 2.5 Hz, 2H, CH₂), 3.34 (m, 2H, CH), 2.90 (s, 3H, CH₃), 2.23 (t, J = 2.5 Hz, 1H, C=CH), 1.21 (dd, J = 6.9, 1.8 Hz, 12H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 145.9, 126.7, 124.0, 81.6, 71.2, 45.6, 41.1, 28.4, 24.5; HRMS (EI) *m/z* calcd. for C₁₆H₂₃N 229.1831; found 229.1825

2-bromo-N-methyl-N-(prop-2-yn-1-yl)aniline (5e)

This compound was prepared according to general procedure and isolated by column chromatography (toluene/hexane = 1/3) to give the product as a yellow oil (77 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.55 (m, 1H, Ar-H), 7.30 – 7.21 (m, 2H, Ar-H), 6.96 – 6.92 (m, 1H, Ar-H), 3.94 (d, J = 2.4 Hz, 2H, CH₂), 2.88 (s, 3H, CH₃), 2.24 (t, J = 2.4 Hz, 1H, C=CH); ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 133.8, 128.0, 125.0, 122.7, 119.7, 78.9, 73.2, 45.3, 40.1; HRMS (EI) *m/z* calcd. for C₁₀H₁₀BrN 222.9997; found 222.9991

2-chloro-N-methyl-N-(prop-2-yn-1-yl)aniline (5f)

This compound was prepared according to general procedure and isolated by column chromatography (toluene/hexane = 1/2) to give the product as a yellow oil (54 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.35 (m, 1H, Ar-H), 7.26 – 7.20 (m, 2H, Ar-H), 7.02 – 6.98 (m, 1H, Ar-H), 3.96 (d, J = 2.4 Hz, 2H, CH₂), 2.89 (s, 3H, CH₃), 2.23 (t, J = 2.4 Hz, 1H, C=CH); ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 130.6, 128.7, 127.3, 124.3, 122.1, 78.9, 73.2, 44.8, 39.9; HRMS (EI) *m/z* calcd. for C₁₀H₁₀ClN 179.0502; found 179.0495

Procedure for Sonogashira Coupling of Propargylamine

In a 8 mL pressure vial, CuI (0.09 mmol, 17 mg) and Pd(PPh₃)₄ (0.03 mmol, 34.7 mg) were added. The vial was then purged and refilled with argon thrice before CH₃CN (3 mL), propargylamine **3a** (1.0 mmol, 151 mg), Et₃N (5 mmol, 0.7 mL) and PhI (1 mmol, 0.11 mL) were added to the vial using a syringe. The reaction was stirred at 60 °C for 17 h and cooled to room temperature. The resulting mixture was concentrated *in vacuo* and the residue was further purified by column chromatography on silica gel (EA/hexane = 1/8) to afford the corresponding *N*-methyl-*N*-(3-phenylprop-2-yn-1-yl)cyclohexanamine⁴ as a yellow oil (188 mg, 83 %). ¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H, Ar-H), 7.33 – 7.27 (m, 3H, Ar-H), 3.64 (s, 2H, CH₂), 2.49 – 2.39 (m, 1H, CH), 2.42 (s, 3H, CH₃), 2.01 – 1.93 (m, 2H, CH₂), 1.85 – 1.76 (m, 2H, CH₂), 1.67 – 1.58 (m, 1H, CH₂), 1.34 – 1.07 (m, 5H, CH₂); ¹³**C NMR** (101 MHz, CDCl₃) δ 131.7, 128.3, 127.9, 123.5, 85.7, 84.8, 61.0, 43.7, 38.6, 29.9, 26.1, 25.6 The NMR spectrum data of this compound is available in the literature and referenced accordingly.

Tuble 511 Caulysis and oridanis servening						
	C≡C Ca	$\begin{array}{c} \text{catalyst, oxidant} \\ \text{CH}_3\text{CN} + 2 \text{ vol\% H}_2\text{O} \\ \hline \\ \hline \\ 80 \text{ °C, 16 h} \end{array} \qquad $	H			
Entry	Catalyst	Oxidant	Yield ^b (%)			
1	CuBr	<i>t</i> -BuOOH in decane	47			
2	CuBr	<i>t</i> -BuOOH in water	40			
3	CuBr	Cumene hydroperoxide	44			
4	CuBr	Di-t-butyl peroxide	trace			
5	CuBr	H_2O_2	trace			
6	CuBr	$KMnO_4$ / NBS / I_2	NR			

Table S1. Catalysts and oxidants screening^a

^a Reaction conditions: Amine (1 mmol), CaC_2 (2.5 mmol), catalyst (10 mol%), oxidant (1.5 eq.), $CH_3CN + 2$ vol% H_2O (5 mL), 80 °C, 16 h. ^b NMR yield.

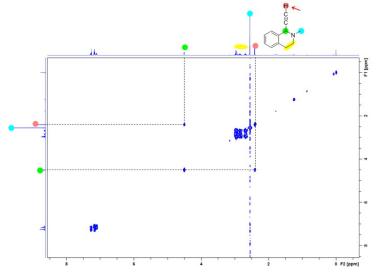


Figure S1. COSY NMR of 3h

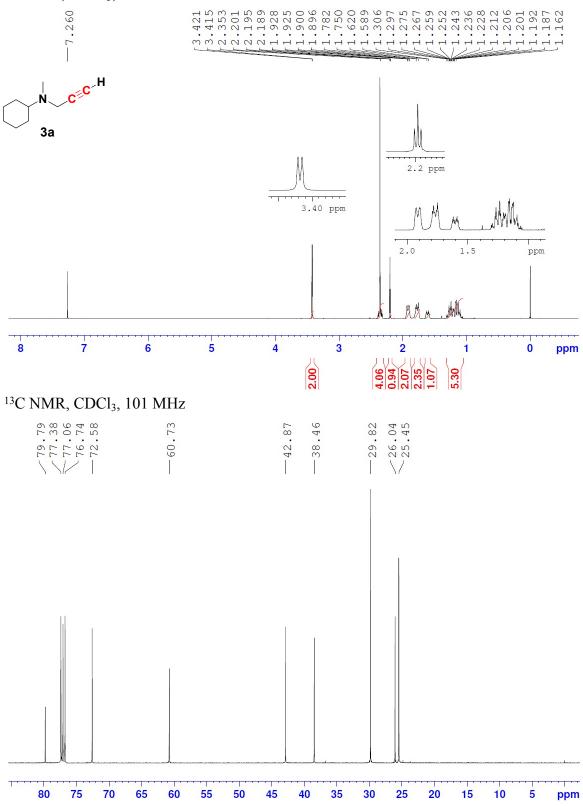
	N_	+ Ca	:	CuBr ^t -BuOOH CH ₃ CN temp, 16 h	\rightarrow	N_C ^{_C}	,Η
Entry	Amine	t-BuOOH	CuBr	H ₂ O added	Additive	Temp	Yield ^a
	(mmol)	(mmol)	(mmol)	(vol%)	(eq.)	(°C)	(%)
1	0.5	2	0.10	-	-	80	70
2	0.5	2	0.10	0.25	-	80	66
3	0.5	2	0.10	1	-	80	45
4	0.5	2	0.10	2	-	80	5
5	0.5	2	0.10	-	TBAB(1)	80	20
6	0.5	2	0.15	-	-	80	59
7	0.5	2	0.20	-	-	80	50
8	0.5	1	0.10	-	-	80	43
9	0.5	2.5	0.10	-	-	80	60
10	0.5	3	0.10	-	-	80	57

Table S2. Optimization of reaction conditions for N,N-dimethylaniline

11	0.5	2	0.10	-	-	90	79
12	0.5	2	0.10	-	-	100	60

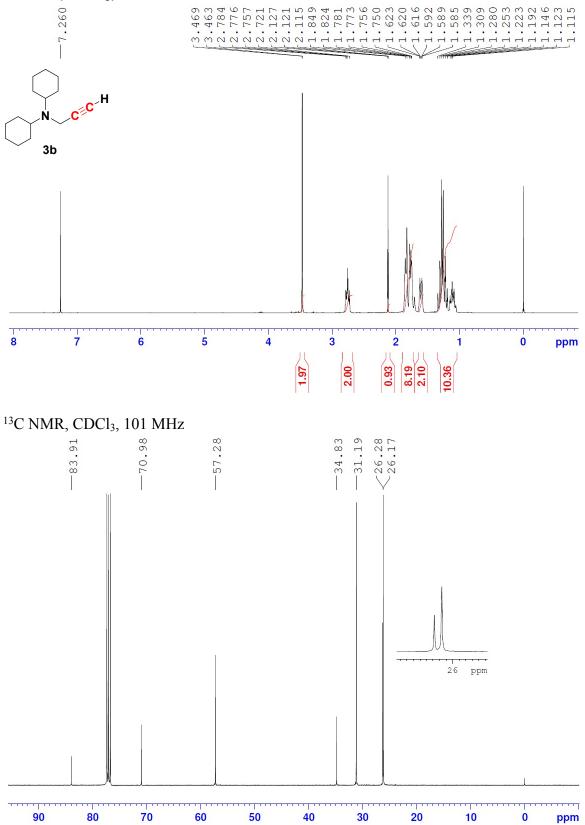
^aNMR yield.

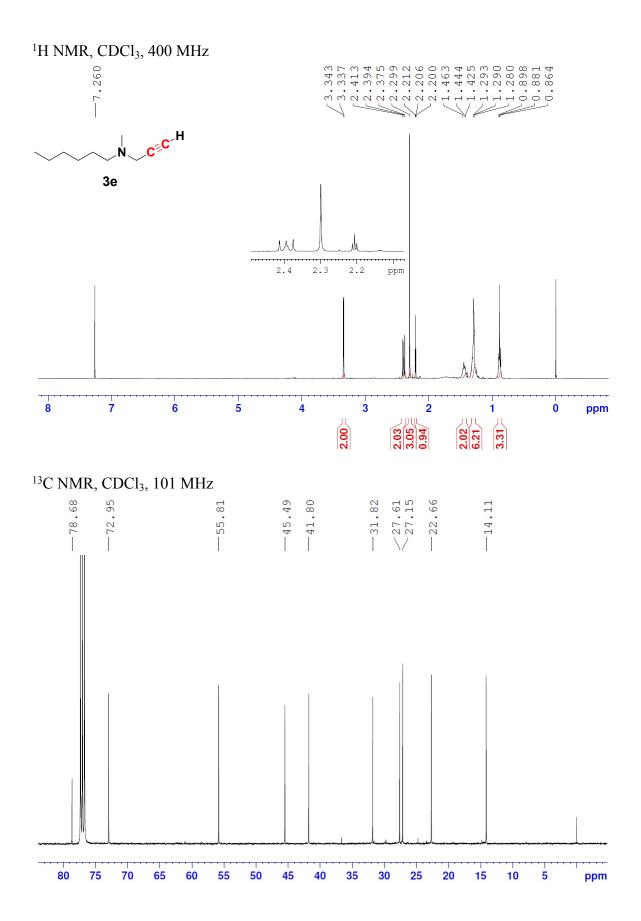
Table S3. Optimization of reaction conditions for 4,4'-trimethylenebis(1-methylpiperidine) 6

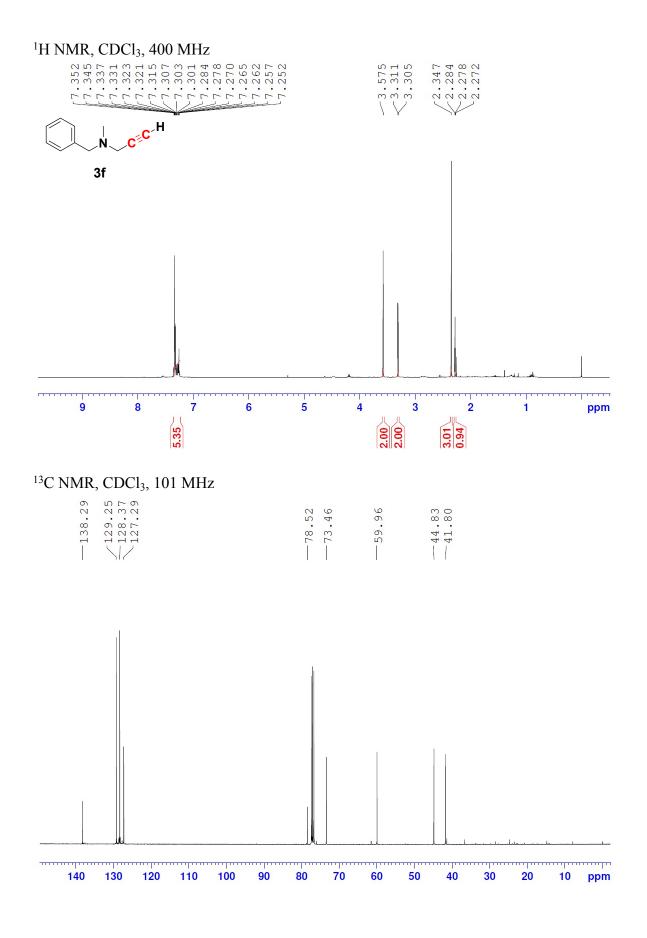

N	→ → → → → → → → → → → → → → → → → → →	Ca C=C CH ₃ CN + 2 vol% H ₂ O temp, time		NC [_] C [,] H + H _` C _{`C} NNC [_] C [,] H		
Entry	DEAD (mmol)	Temp (°C)	Time (h)	Total Yield ^a	Mono- : Di-	
				(%)	product ^a (%)	
1	3	120	16	77	62 : 15	
2	4	120	16	87	58:29	
3	4	140	16	75	41:34	
4	4	120	32	65	35:30	

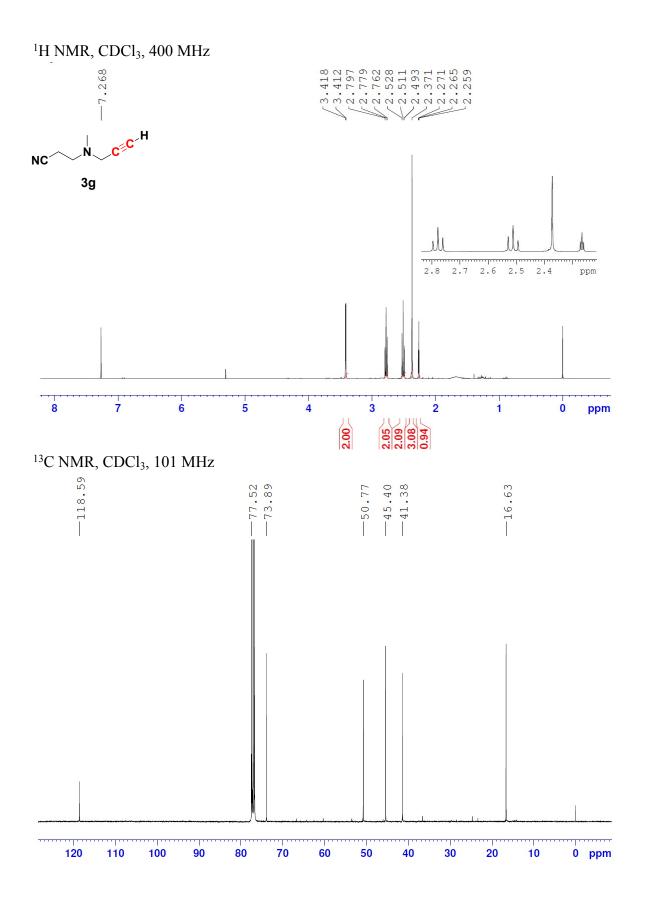
^aNMR yield.

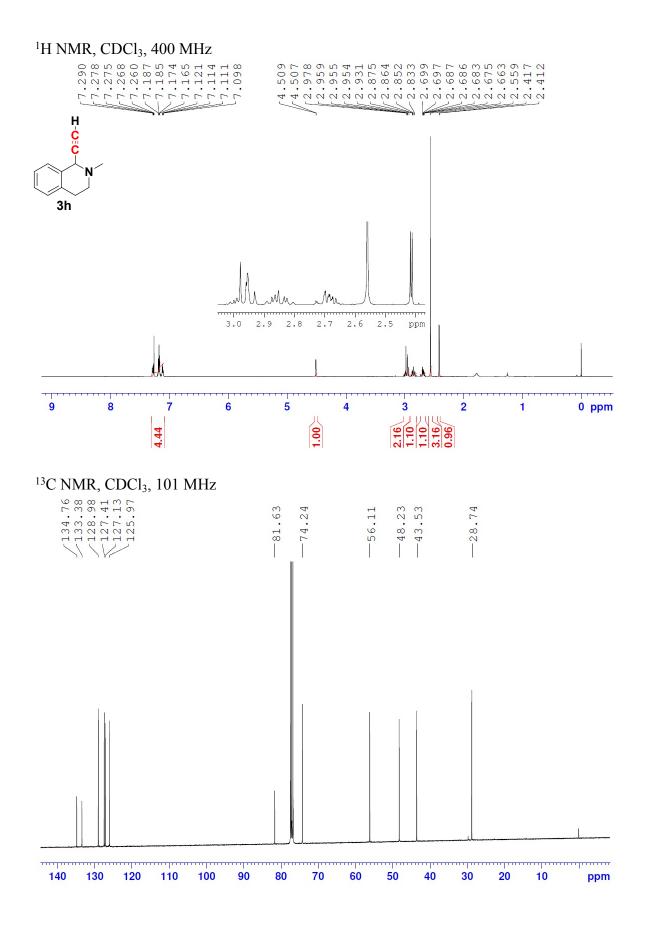
References

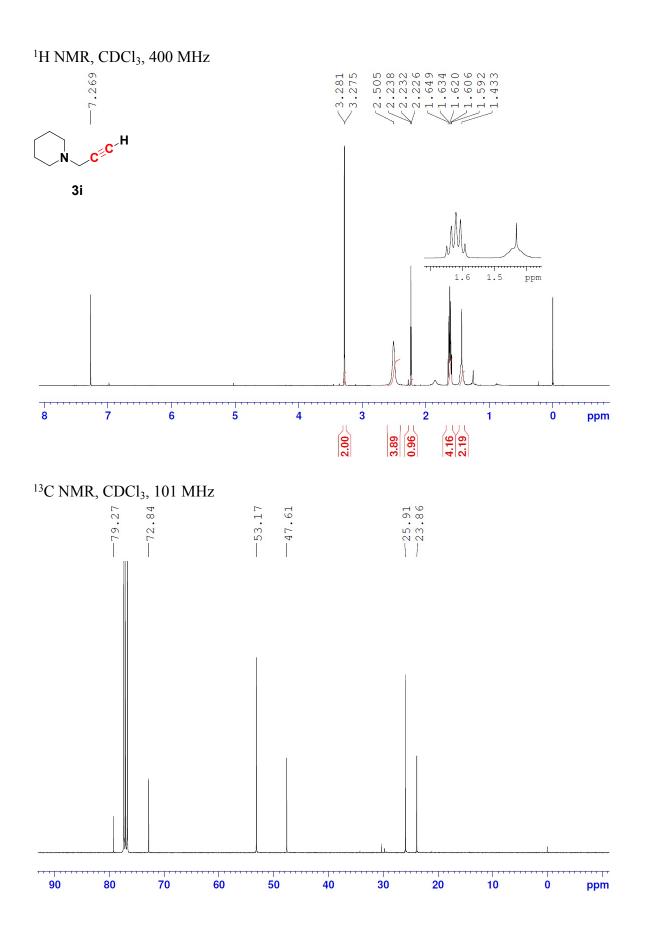

- [1] T. Sugiishi, A. Kimura, H. Nakamura, J. Am. Chem. Soc., 2010, 132, 5332
- [2] D. P. Chauhan, S. J. Varma, A. Vijeta, P. Banerjee, P. Talukdar, *Chem. Commun.*, 2014, 50, 323
- [3] Y. Zhou, J. A. Porco, Jr., J. K. Snyder, Org. Lett., 2007, 9, 393
- [4] C. M. R. Volla, P. Vogel, Org. Lett., 2009, 11, 1701

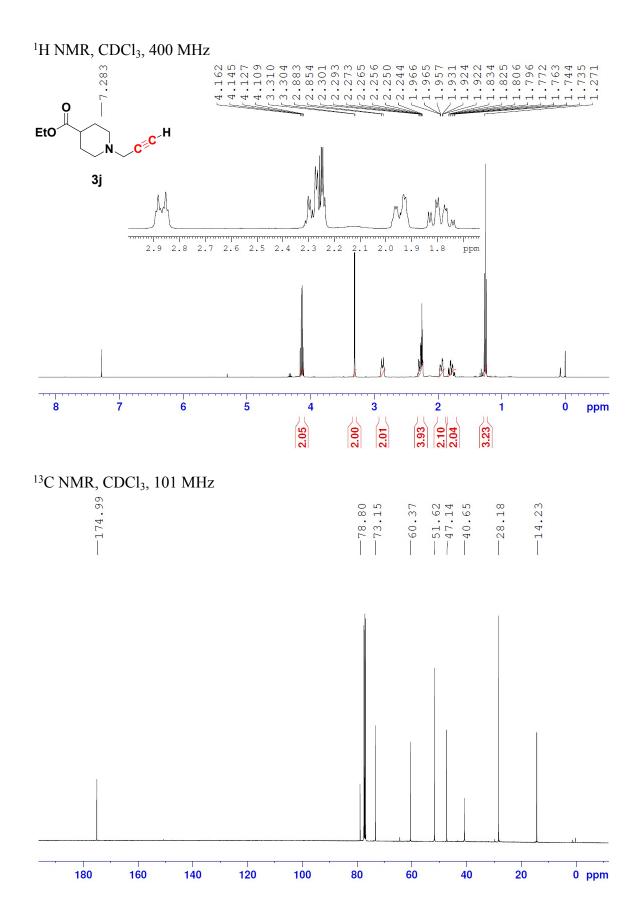

¹H and ¹³C NMR Spectra of Propargylamines

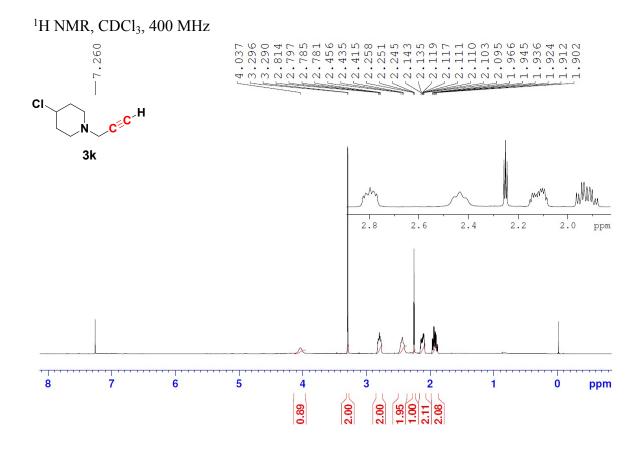


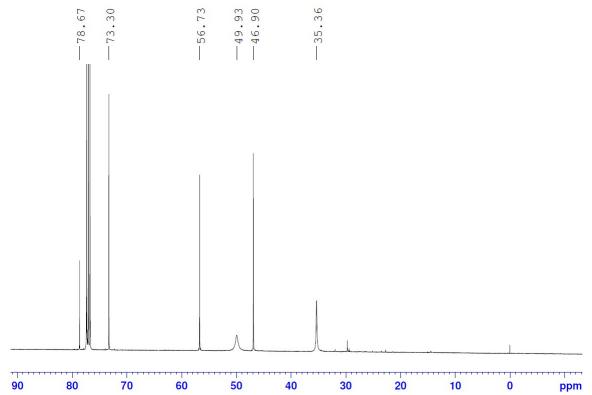

¹H NMR, CDCl₃, 400 MHz

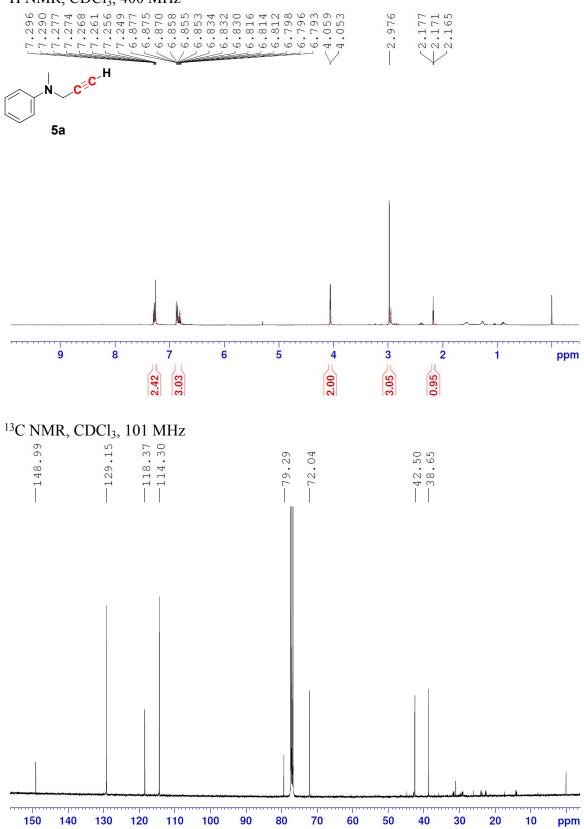

¹H NMR, CDCl₃, 400 MHz

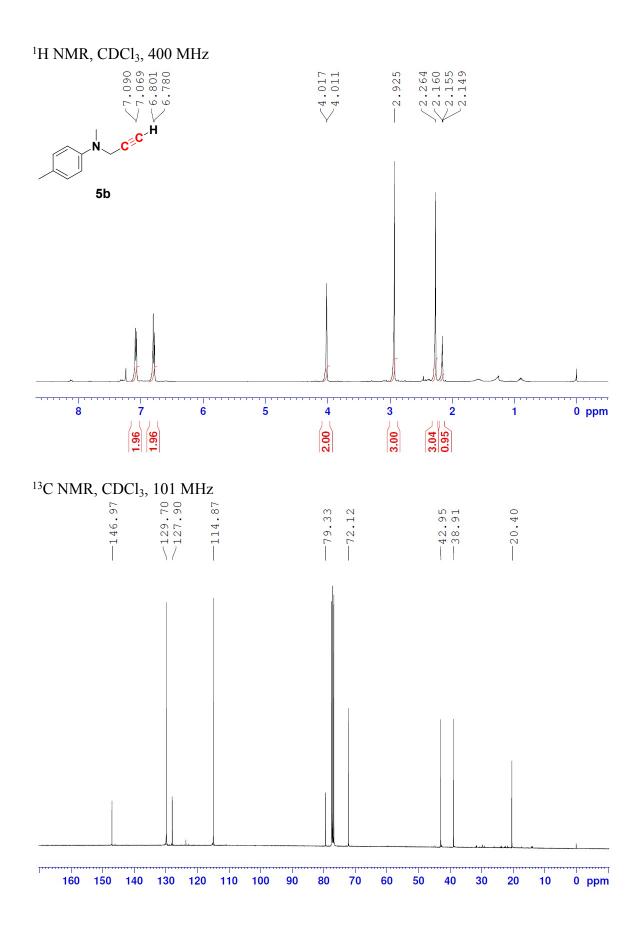


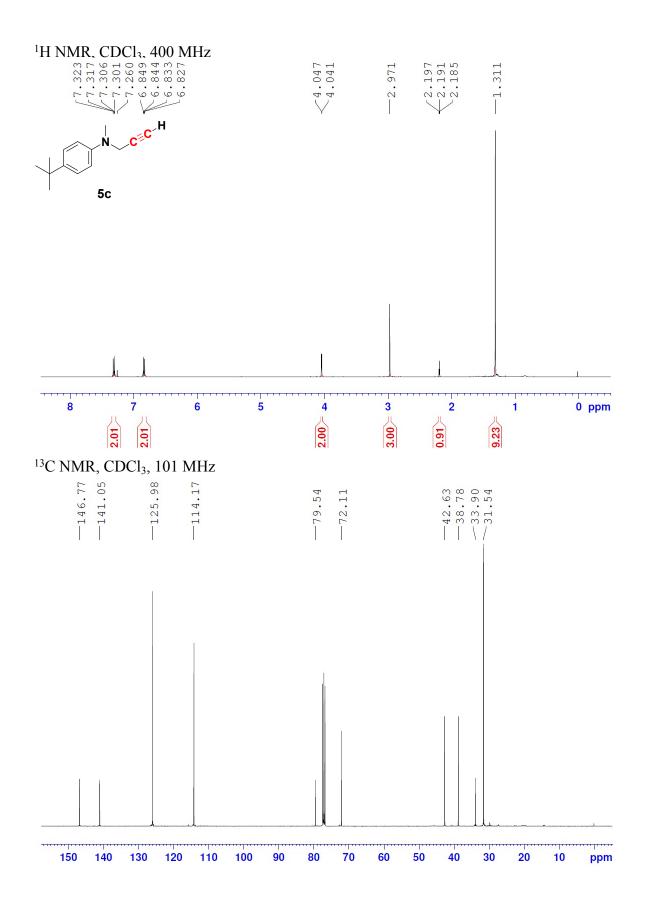











¹³C NMR, CDCl₃, 101 MHz

