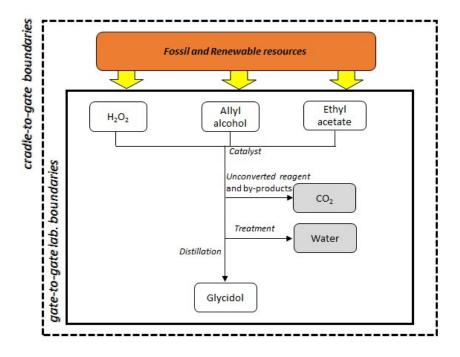
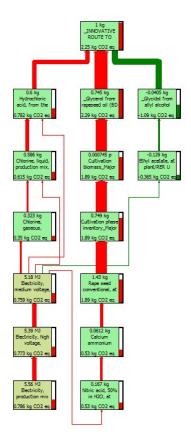
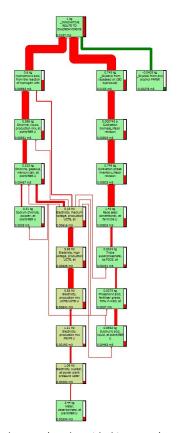

Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting information

Fig. S1 System boundaries of the traditional (red) and innovative (green) route to chlorohydrins: i) continuous line represents the gate-to-gate boundaries within the laboratory; ii) the dashed box is the entire production chain from the raw materials extraction up to the synthesis of the valuable product(s) (cradle-to-gate approach).

*Glycidol production using renewables (glycerol) implies the avoided production from allyl alcohol according to the system boundaries in Figure S2.


Fig. S2 System boundaries of the traditional fossil-route from allyl alcohol.

System input (for the first chlorination)	Unit	Amo	unt
Glycerol	g	150	0.0
HCl_g	g	11	9
Acetic acid (catalyst)	g	7.	8
System outputs - products		Traditional	Innovative
α,β-DCH	g	188.0	188.0
α,γ-DCH	g	5.0	5.0
Glycidol	g	-	8.1
System outputs – environmental releases			
(β-МСН)	g	(13.5)	-
CO_2 from β -MCH incineration	g	16.1	-
Water	g	0.2	1.6
KCI**	g	-	6.0
Distillation procedures			
N° of steps		1	3
Steam***	MJ	1.4E-02	7.2E-02
Cooling***	MJ	1.2E-02	6.3E-02
EtOH***	g	-	6.4
CO ₂ from unrecovered EtOH incineration***	g	-	18.4

^{**}deriving from KOH input (4.5g) used to facilitate the chlorine elimination
***evaluated on the basis of the methodology reported in literature. Tab. S1 Inventories for both scenarios: traditional and innovative, derived from experimental data.

Fig. S3 SimaPro network tool: negative effect (red arrows) and avoided impacts (green arrows) are depicted to show contribution to the CF index.

Fig. S4 SimaPro network tool: negative effect (red arrows) and avoided impacts (green arrows) are depicted to show contribution to the WF index.

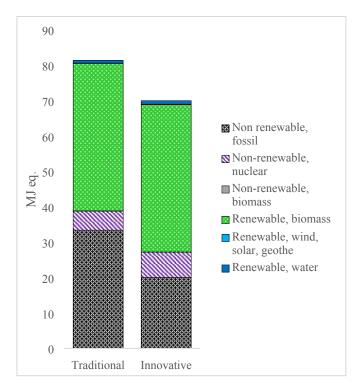
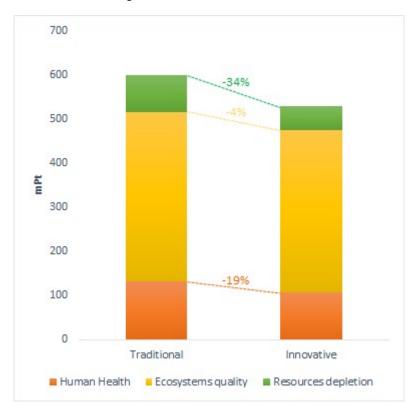



Fig. \$5 Contribution to CED indicator.

Fig. S6 Effect of the improvements on the ReCiPe receptors.

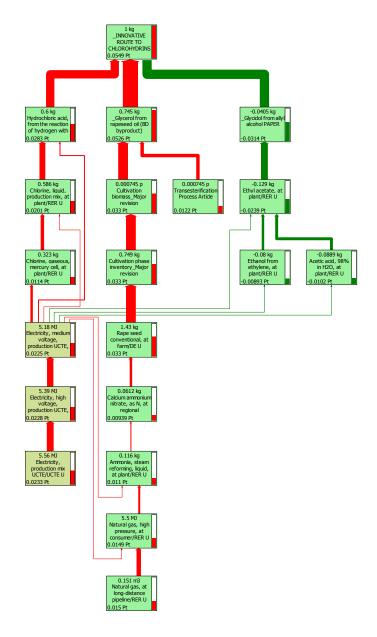


Fig. S7 SimaPro network tool: SS-resources depletion receptor.

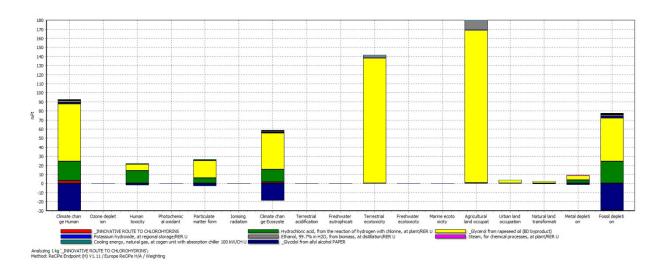


Fig. S8 SimaPro weighting tool: contribution of each category to cumulative SS.

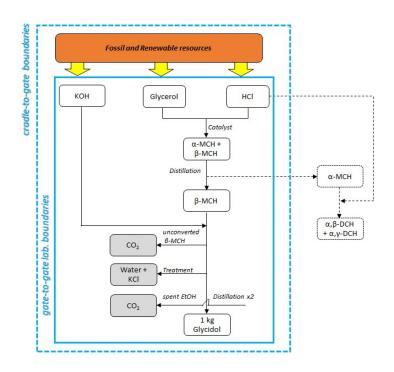


Fig. S9 System boundaries of the innovative route to produce 1kg of glycidol.

<u>System input</u>	Unit	
Allyl alcohol	kg	1.8
Ethyl acetate	kg	3.1
H_2O_2	kg	3.5
(Catalyst)	kg	0.2
Molar yield to glycidol	%	43
Selectivity to glycidol	%	93
System outputs – environmental releases		
Water	kg	4.3
CO ₂ from unconverted allyl alcohol incineration	kg	1.0
CO ₂ from by-products incineration	kg	0.2
CO ₂ from unrecovered ethyl acetate incineration	kg	3.1
<u>Distillation procedures</u>		
<u>Distillation procedures</u> N° of steps		1
	MJ	1 2.6

^{***} evaluated on the basis of the methodology reported in literature. 75

 Tab. S2 Cradle-to-gate inventories and allocation for the innovative route to produce 1kg of glycidol.

<u>System input</u>	Unit	
Glycerol	kg	18.4
HCl_g	kg	14.6
Acetic acid (catalyst)	kg	1.0
Co-products (not included in the boundaries)	kg	
(α,γ-DCH)	kg	23.1
(β,γ-DCH)	kg	0.6
System outputs – environmental releases	kg	
Water	kg	0.2
KCI****	kg	0.7
CO₂ from unrecovered β-MCH	kg	0.2
<u>Distillation procedures</u>		
N° of steps		3
Steam***	MJ	8.8
Cooling***	MJ	7.7
EtOH***	kg	0.8
CO ₂ from unrecovered EtOH incineration***	kg	2.3
Allocation to be applied	%	4

Tab. S3 Cradle-to-gate inventories for the traditional route to produce 1kg of glycidol. Based on data reported in literature. ³⁶

Performance index	from allyl alcohol	from glycerol
CF (kg CO _{2 eq.})	27.0	3.3
WF (m ³)	7.0E-02	2.0E-02
CED (MJ _{eq.})	349.1	83.0
SS (Pt)	2.1	0.6

Tab. S4 Cradle-to-gate analysis for the synthesis of 1kg of glycidol: results for the traditional route (from allyl alcohol) and the innovative pathway (from glycerol).

^{****} evaluated on the basis of the methodology reported in literature. 75
***** deriving from KOH input (0.6kg) used to facilitate the chlorine elimination.