Catalyst- and solvent-free hydrophosphination and multicomponent hydrothiophospination of alkenes and alkynes

Yanina Moglie,^a María José González-Soria,^a Iris Martín-García,^a Gabriel Radivoy^b and Francisco Alonso,^{a,*}

^{*a*} Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante (Spain)

^b Departamento de Química, Instituto de Química del Sur (INQUISUR-CONICET), Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca (Argentina)

Supplementary Information

General	. S2
Preparation of deuterated compounds	. S2
Diphenyl disulfide-catalysed isomerisation of (Z) - to (E) -alkenes. General procedure	. S2
General procedure for the hydrophosphination of alkenes 1	. S3
Characterisation of compounds 2	. S3–S8
General procedure for the hydrothiophosphination of alkenes 1	. S 8
Characterisation of compounds 3	. S9– S14
General procedure for the hydrophosphination of alkynes 4	. S14
Characterisation of compounds 5	. S14–S17
General procedure for the hydrothiophosphination of alkynes 4	. S17
Characterisation of compounds 6	. S18–S21
References	. S22
NMR spectra of compounds 2	. S23–S40
NMR spectra of compounds 3	. S41–S58
NMR spectra of compounds 5	. S59–S72
NMR spectra of compounds 6	. S73–S8 4
Figure S1. ¹ H NMR spectrum of α -D ₁ -5i	. S85
Figure S2. Kinetic isotope effect graphic for the synthesis of 2a	. S85
Figure S3. Effect of the $1a$ /diphenylphosphine ratio on the formation of $2a$. S86
Figure S4. Initial rates determined for the reaction of 1a and diphenylphosphine	. S86
Figure S5. X-ray crystallographic structure and data of compound 2z	. S87
Figure S6. X-ray crystallographic structure and data of compound 6a	. S88

General

Diphenylphosphine (Aldrich), elemental sulfur, and all the starting alkenes and alkynes were commercially available of the best grade (Aldrich, Acros, Alfa Aesar) and were used without purification. Infrared analysis was performed with a FT-IR-4100 (ATR) further spectrophotometer; wavenumbers are given in cm⁻¹. NMR spectra were recorded on Bruker Avance 300 and 400 spectrometers (300 and 400 MHz for ¹H NMR; 75 and 101 MHz for ¹³C NMR; 122 and 162 MHz for ³¹P MNR); chemical shifts are given in (δ) parts per million and coupling constants (J) in hertz. Mass spectra (EI) were obtained at 70 eV on an Agilent 5973 spectrometer; fragment ions in m/z with relative intensities (%) in parentheses. HRMS analyses were carried out on Finnigan MAT95S and Agilent 7200 (Q-TOF) spectrometers. The purity of volatile compounds and the chromatographic analyses (GLC) were determined with Hewlett Packard HP-6890 and Youling 6100 instruments equipped with flame ionization detectors and 30 m capillary columns (0.32 mm diameter, 0.25 µm film thickness), using nitrogen (2 mL/min) as carrier gas, $T_{\text{injector}} = 270 \text{ °C}$, $T_{\text{column}} = 60 \text{ °C}$ (3 min) and 60–270 °C (15 °C/min); retention times (t_r) are given in min. Thin layer chromatography was carried out on TLC plastic sheets with silica gel 60 F₂₅₄ (Merck). Column and preparative chromatography was performed using silica gel 60 of 40-60 microns and P/UV254, respectively (hexane/EtOAc as eluent). All reactions were performed with new or thoroughly cleaned magnetic bars in order to rule out any catalysis by traces of metals.

Synthesis of deuterated compounds

Deuteriodiphenylphosphine (Ph₂PD) was prepared following a literature procedure,¹ namely: *n*butyl lithium [1.6 M in hexane, 5.5 mmol (1.1 equiv.)] was added dropwise to a solution of diphenylphosphine (5.0 mmol, 1.0 equiv.) in tetrahydrofuran (5 mL) at 0 °C. After stirring for 1 h at room temperature, 0.2 mL of deuterium oxide were added and stirring was continued for 10 min, followed by the addition of anhydrous magnesium sulfate. The resulting mixture was decanted via cannula and the solvent was removed in vacuo to give deuteriodiphenylphosphine in quantitative yield as a colourless oil.

(Deuterioethynyl)cyclohexane $[(D_1)-4i]$ was prepared by stirring ethynylcyclohexane (4i) and D₂O, in the presence of copper nanoparticles on carbon, at 70 °C overnight, followed by standard extractive work-up.²

Diphenyl disulfide-catalysed isomerisation of (Z)- to (E)-alkenes. General procedure.³

The Z alkene (0.8 equiv.) in THF (2 mL) was heated under reflux for 8 h in the presence of $(PhS)_2$ (0.2 equiv.) and AIBN (0.2 equiv.). The progress of the reaction was monitored by GC

until steady conversion into the *E* isomer. The resulting mixture was diluted with EtOAc (10 mL) and subjected to aqueous workup with water (3×10 mL) and brine (2×10 mL). The organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The *E*/*Z* ratio was determined by GC-MS.

General procedure for the hydrophosphination of alkenes 1

All reactions were performed using tubes in a multi-reactor system under argon. Diphenylphosphine (0.5 mmol, 87 μ L) and the alkene (1, 0.5 mmol) were stirred during the specified time at room temperature, 70 or 100 °C (Tables 1–3). The progress of the reaction was monitored by TLC and/or GLC until total or steady conversion was achieved. The resulting mixture was dissolved in EtOAc (20 mL) followed by the addition of silica gel and removal of the excess of solvent in vacuo. The reaction crude absorbed on silicagel was subjected to column chromatography (silica gel, hexane/EtOAc) to give the pure tertiary phosphines **2**. The phosphine oxides **2x**, **2y** and **2z** were purified by preparative chromatography (silica gel, hexane/EtOAc).

Characterisation of compounds 2

Compounds 2a, ${}^{4} 2b$, ${}^{4} 2d$, ${}^{4} 2f$, ${}^{5} 2g$, ${}^{6} 2j$, ${}^{7} 2l$, ${}^{8} 2m$, ${}^{9} 2n$, ${}^{4} 2o$, ${}^{10} 2p$, ${}^{5} 2s^{11}$ and $2v^{12}$ were characterised by comparison of their physical and spectroscopic data with those described in the literature. Data for the new compounds or those not fully characterised in the literature, follows:

(4-Bromophenethyl)diphenylphosphine (2c): Colourless oil; 150.9 mg (82% yield); t_r 16.59 min; R_f 0.63 (hexane). IR (neat) v = 3069, 2926, 1489, 1432, 1092, 1014, 803, 735, 694, 646 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.49–7.31 (m, 12H), 7.04 (d, J = 8.4 Hz, 2H), 2.74–2.62 (m, 2H), 2.39–2.29 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 141.6 (d, J = 13.0 Hz, CP), 138.4 (d, J = 12.7 Hz, CCH₂), 132.8 (d, J = 18.5 Hz, CHCP), 131.6, 130.1, 128.7 (d, J = 23.6 Hz, CHCHCP), 128.6, 119.9, 31.8 (d, J = 18.1 Hz, CH₂P), 30.2 (d, J = 12.9 Hz, CH₂CH₂P). ³¹P NMR (162 MHz, CDCl₃): δ = -16.2. GC-MS (EI): m/z (%) = 370 (34) [M⁺+2], 369 (56) [M⁺+1], 368 (35) [M⁺], 367 (51), 342 (28), 340 (29), 200 (10), 199 (71), 186 (49), 184 (10), 183 (54), 165 (11), 152 (10), 121 (100), 109 (12), 108 (56), 107 (22), 104 (10), 91 (11), 78 (12), 77 (24), 51 (10). HRMS (EI): m/z calcd. for C₂₀H₁₈BrP 368.0329, found 368.0336.

4-[2-(Diphenylphosphanyl)ethyl]phenyl acetate (2e): Colourless oil; 148.0 mg (85% yield); t_r 17.72 min; R_f 0.32 (hexane/EtOAc, 9:1). IR (neat) v = 3051, 2915, 1760, 1506, 1432, 1367, 1213, 1192, 1164, 1016, 909, 736, 695 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.47–7.40 (m, 4H), 7.37–7.28 (m, 6H), 7.16 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 2.75–2.64 (m, 2H), 2.38–2.31 (m, 2H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 169.7, 148.9, 140.3 (d, J = 13.4 Hz, CP), 138.5 (d, J = 12.9 Hz, CCH₂), 132.8 (d, J = 18.5 Hz, CHCP), 129.2, 128.7 (d, J = 20.8 Hz, CHCHCP), 128.6, 121.5, 31.7 (d, J = 18.2 Hz, CH₂P), 30.2 (d, J = 12.9 Hz, CCH₂P), 21.2. ³¹P NMR (162 MHz, CDCl₃): δ = -15.9. GC-MS (EI): m/z (%) = 349 (13) [M⁺+1], 348 (61) [M⁺], 347 (96), 320 (27), 305 (22), 278 (19), 200 (10), 199 (64), 186 (42), 183 (42), 165 (10), 121 (100), 108 (44), 107 (18), 91 (14), 77 (16). HRMS (EI): m/z calcd. for C₂₂H₂₁O₂P 348.1271, found 348.1279.

[2-(Naphthalen-2-yl)ethyl]diphenylphosphine (2h): Yellow oil; 154.8 mg (91% yield); t_r 20.90 min; R_f 0.44 (hexane). IR (neat) v = 3052, 1435, 1178, 1121, 818, 693, 740, 724, 693 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.78–7.73 (m, 3H), 7.58 (br s, 1H), 7.49–7.39 (m, 6H), 7.36–7.28 (m, 7H), 2.92–2.82 (m, 2H), 2.47–2.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 140.2 (d, J = 13.3 Hz, CP), 138.6 (d, J = 13.0 Hz, CCH₂), 133.8, 132.9 (d, J = 18.5 Hz, CHCP), 132.2, 128.7 (d, J = 19.4 Hz, CHCHCP), 128.6, 128.2, 127.8, 127.6, 127.2, 126.2, 126.1, 125.4, 32.5 (d, J = 17.8 Hz, CH₂P), 30.2 (d, J = 13.0 Hz, CH₂CH₂P). ³¹P NMR (162 MHz, CDCl₃): δ = -15.7. GC-MS (EI): m/z (%) = 341 (15) [M⁺+1], 340 (72) [M⁺], 339 (100), 312 (37), 199 (31), 186 (18), 183 (22), 154 (17), 153 (13), 152 (11), 121 (55), 115 (11), 108 (25). HRMS (EI): m/z calcd. for C₂₄H₂₁O₂P 340.1381, found 340.1376.

{2-[(1,1'-Biphenyl)-4-yl]ethyl}diphenylphosphine (2i): Colourless oil; 164.8 mg (90% yield); t_r 27.02 min; R_f 0.63 (hexane/EtOAc, 9:1). IR (neat) v = 3051, 3025, 2925, 1483, 1432, 820, 738, 693 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.51–7.45 (m, 2H), 7.43–7.30 (m, 9H), 7.26–7.23 (m, 6H), 7.17–7.13 (m, 2H), 2.72–2.64 (m, 2H), 2.35–2.27 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 141.8 (d, *J* = 13.2 Hz, CCH₂), 141.2, 139.1, 138.6 (d, *J* = 13.1 Hz, CP), 132.9 (d, *J* = 18.5 Hz, CHCP), 128.9, 128.7 (d, *J* = 19.8 Hz, CHCHCP), 128.6, 128.5, 127.3, 127.2, 127.1, 32.0 (d, *J* = 17.9 Hz, CH₂P), 30.3 (d, *J* = 13.0 Hz, CH₂CH₂P). ³¹P NMR (162 MHz, CDCl₃): δ = -15.8. GC-MS (EI): *m*/*z* (%) = 367 (12) [M⁺+1], 366 (56) [M⁺], 365 (100), 339 (12), 338 (48), 199 (40), 186 (29), 183 (30), 180 (19), 166 (11), 165 (25), 152 (13), 121 (66), 108 (30), 77 (12). HRMS (EI): *m*/*z* calcd. for C₂₆H₂₃P 366.1537, found 366.1547.

4-(Diphenylphosphanyl)butan-2-one (2k): Colourless oil; 89.6 mg (70% yield); t_r 15.18 min; R_f 0.50 (hexane/EtOAc, 8:2). IR (neat) v = 3051, 2914, 1714, 1432, 1385, 740, 694 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.44–7.40 (m, 4H), 7.36–7.29 (m, 6H), 2.56–2.44 (m, 2H), 2.33–2.24 (m, 2H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 200.7 (d, *J* = 12.5 Hz, CO), 138.1 (d, *J* = 12.5 Hz, CP), 132.8 (d, *J* = 18.6 Hz, CHCP), 128.8 (d, *J* = 22.9 Hz, CHCHCP), 128.6, 39.9 (d, *J* = 39.9 Hz, CH₂CH₂P), 29.9, 21.4 (d, *J* = 11.2 Hz, CH₂P). ³¹P NMR (162 MHz, CDCl₃): δ = –15.6. GC-MS (EI): m/z (%) = 256 (56) [M⁺], 255 (98), 217 (12), 215 (11), 213 (12), 202 (10), 201 (63), 185 (21), 184 (13), 183 (100), 152 (14), 141 (37), 131 (11), 121 (21), 108 (22), 107 (21). HRMS (EI): m/z calcd. for C₁₆H₁₇OP 256.1017, found 256.1007.

3-(**Diphenylphosphanyl**)-*N*,*N*-dimethylpropanamide (2q): White solid; 99.8 mg (70% yield); m.p. 102.0–106.0 °C; t_r 16.71 min; R_f 0.32 (hexane/EtOAc, 1:1). IR (neat) v = 3050, 2918, 1637, 1481, 1430, 1410, 1393, 1267, 1134, 1046, 155, 743, 721, 698 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.47–7.42 (m, 4H), 7.34–7.31 (m, 6H), 2.92 (s, 3H), 2.87 (s, 3H), 2.39 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): δ = 172.2 (d, *J* = 14.9 Hz, CO), 138.1 (d, *J* = 12.4 Hz, ArC), 132.7 (d, *J* = 18.5 Hz, ArCH), 128.6 (d, *J* = 26.1 Hz, ArCH), 128.5 (s, ArCH), 37.0 (s, CH₃N), 35.5 (s, CH₃N), 29.7 (d, *J* = 20.4 Hz, CH₂P), 23.1 (d, *J* = 10.4 Hz, CH₂CH₂P). ³¹P NMR (122 MHz, CDCl₃): δ = –15.5 ppm. GC-MS (EI): *m/z* (%) = 285 (20) [M⁺], 270 (33), 214 (14), 213 (87), 209 (11), 208 (100), 186 (11), 183 (76), 160 (45), 152 (15), 133 (13), 109 (15), 108 (23), 107 (19), 84 (53), 72 (17), 68 (44). HRMS (ES+): *m/z* calcd. for C₁₇H₂₀NOP 285.1283, found 285.1281. H_2N $P(O)Ph_2$

3-(Diphenylphosphoryl)propanamide (2r): White solid; 102.0 mg (75% yield); m.p. 205.4–208.0 °C; t_r 13.80 min; R_f 0.19 (EtOAc/MeOH, 9:1). IR (KBr) v = 3313, 3166, 1687, 1433, 1413, 1180, 1119, 751, 694 cm⁻¹. ¹H NMR (300 MHz, CD₃OD): δ = 7.86–7.75 (m, 4H), 7.64–7.51 (m, 6H), 2.79–2.66 (m, 2H), 2.53–2.41 (m, 2H). ¹³C NMR (75 MHz, CD₃OD): δ = 176.3 (d, *J* = 14.9 Hz, CO), 133.6 (d, *J* = 2.8 Hz, ArCH), 132.8 (d, *J* = 100.8 Hz, ArC), 131.9 (d, *J* = 11.9 Hz, ArCH), 130.1 (d, *J* = 107.0 Hz, ArCH), 27.9 (d, *J* = 2.7 Hz, CH₂CH₂P), 25.7 (d, *J* = 73.5 Hz, CH₂CH₂P). ³¹P NMR (122 MHz, CD₃OD): δ = 36.4 ppm. GC-MS (EI): *m/z* (%) = 273 [M⁺] (2), 219 (11), 202 (68), 201 (45), 197 (11), 196 (100), 155 (14), 125 (10), 77 (36), 51 (15). HRMS (ES+): *m/z* calcd. for C₁₅H₁₆NO₂P 273.0919, found 273.0923.

N-[2-(Diphenylphosphanyl)ethyl]phthalimide (2t)

Pale yellow oil; 125.7 mg (70% yield); t_r 22.11 min; R_f 0.62 (hexane/EtOAc, 7:3). IR (neat) v = 3057, 2911, 1764, 1700, 1432, 1392, 1359, 1315, 1119, 1066, 946, 822, 714, 694 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.38-2.44$ (m, 2H), 3.80 (dt, J = 15.7, 8.5 Hz, 2H), 7.19–7.26 (m, 6H), 7.36–7.41 (m, 4H), 7.58–7.63 (m, 2H), 7.66–7.73 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): $\delta =$ 27.5 (d, J = 14.8 Hz, CH₂P), 35.5 (d, J = 23.1 Hz, CH₂CH₂P), 123.3, 128.6, 128.8 (d, J = 19.2 Hz, CHCHCP), 132.8 (d, J = 19.0 Hz, CHCP), 134.0, 137.5, 137.5 (d, J = 12.1 Hz, CP), 168.2. ³¹P NMR (162 MHz, CDCl₃): $\delta = -21.5$. GC-MS (EI): m/z (%) = 360 (25) [M⁺+1], 359 (100) [M⁺], 201 (50), 199 (30), 186 (15), 183 (36), 179 (10), 130 (21), 121 (43), 108 (25), 107 (13), 77 (19). HRMS (EI): m/z calcd. for C₂₂H₁₈NO₂P 359.1075, found 359.1072.

N-[2-(Diphenylphosphanyl)ethyl]pyrrolidin-2-one (2u)

Yellow oil; 115.9 mg (78% yield); t_r 19.57 min; R_f 0.37 (EtOAc). IR (neat) v = 3050, 2914, 2873, 2360, 2341, 1677, 1432, 1285, 739, 695 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.45–7.39 (m, 4H), 7.37–7.28 (m 6H), 3.45–3.39 (m, 2H), 3.34 (t, *J* = 7.0 Hz, 2H), 2.34–2.24 (m, 4H), 1.92–

1.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.9$, 137.9 (d, J = 12.2 Hz, CP), 132.8 (d, J = 19.0 Hz, CHCP), 128.9, 128.7 (d, J = 22.4 Hz, CHCHCP), 47.6, 40.2 (d, J = 22.3 Hz, CH₂CH₂P), 31.0, 26.6 (d, J = 14.3 Hz, CH₂P), 17.9. ³¹P NMR (162 MHz, CDCl₃): $\delta = -20.7$. GC-MS (EI): m/z (%) = 297 (40) [M⁺], 269 (26), 241 (12), 220 (65), 213 (24), 212 (70), 211 (20), 199 (22), 197 (11), 186 (22), 185 (17), 184 (11), 183 (73), 172 (100), 165 (11), 152 (13), 145 (13), 134 (34), 133 (18), 121 (73), 109 (18), 108 (87), 107 (32), 98 (13), 91 (21), 77 (20), 70 (12), 69 (18), 68 (13), 56 (10). HRMS (EI): m/z calcd. for C₁₈H₂₀NOP 297.1283, found 297.1273.

Ph P(O)Ph₂

Diphenyl(3-phenylpropyl)phosphine oxide (2x): Colourless oil; 113.6 mg (71% yield); t_r 22.01 min; R_f 0.62 (hexane/EtOAc, 1:1). IR (neat) v = 3055, 3035, 2928, 2858, 1589, 1490, 1437, 1173, 1119, 978, 745, 720, 616 cm⁻¹. ¹H NMR (300 MHz, CD₃OD): δ = 7.74 (ddd, J = 11.6, 8.1, 1.5 Hz, 4H), 7.61–7.52 (m, 6H), 7.30–7.14 (m, 5H), 2.75 (t, J = 7.4 Hz, 2H), 2.46–2.37 (m, 2H), 1.90–1.87 (m, 2H). ¹³C NMR (75 MHz, CD₃OD): δ = 140.9 (s, ArC), 131.8 (d, J = 99.7 Hz, ArC), 131.9 (d, J = 2.7 Hz, ArCH), 130.7 (d, J = 9.7 Hz, ArCH), 128.6 (d, J = 11.8 Hz, ArCH), 128.1 (s, ArCH), 128.0 (s, ArCH), 125.8 (s, ArCH), 35.9 (d, J = 14.7 Hz, CH₂CH₂P), 27.7 (d, J = 72.3 Hz, CH₂P), 23.1 (d, J = 3.7 Hz, CH₂CH₂CH₂P). ³¹P NMR (122 MHz, CD₃OD): δ = 37.0 ppm. GC-MS (EI): m/z (%) = 320 (7) [M⁺], 215 (100), 201 (10), 91 (7), 77 (8). HRMS (ES+): m/z calcd. for C₂₁H₂₁OP 320.1330, found 320.1322.

P(O)Ph₂

Octyldiphenylphosphine oxide (2y): White solid; 109.9 mg (70% yield); m.p. 54.0–56.0 °C (hexane/EtOAc); t_r 18.39 min; R_f 0.52 (EtOAc). IR (neat) v = 3050, 2925, 2854, 1437, 1179, 1118, 746, 720, 693 cm⁻¹. ¹H NMR (300 MHz, CD₃OD): δ = 7.80 (ddd, J = 11.6, 8.1, 1.5 Hz, 4H), 7.56 (m, 6H), 2.46–2.42 (m, 2H), 1.67–1.03 (m, 12H), 0.89 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CD₃OD): δ = 130.5 (d, J = 98.5 Hz, ArC), 130.4 (d, J = 2.4 Hz, ArCH), 128.9 (d, J = 9.6 Hz, ArCH), 127.1 (d, J = 11.7 Hz, ArCH), 29.9 (CH₂), 28.8 (d, J = 14.2 Hz, CH₂CH₂P), 27.2 (d, J = 3.1 Hz, CH₂), 26.8 (d, J = 70.2 Hz, CH₂P), 20.7 (s, CH₂), 19.5 (d, J = 4.1 Hz, CH₂CH₂CH₂P), 11.5 (s, CH₃). ³¹P NMR (122 MHz, CD₃OD): δ = 35.4 ppm. GC-MS (EI): m/z (%) = 314 (3) [M⁺], 257 (10), 229 (11), 216 (55), 215 (100), 202 (60), 201 (34). HRMS (ES+): m/z calcd. for C₂₀H₂₇OP 314.1800, found 314.1788.

∠P(O)Ph₂

(*S*)-[(4-Isopropylcyclohex-1-en-1-yl)methyl]diphenylphosphine oxide (2z): White solid; 126.8 mg (75% yield); m.p. 143.0–148.0 °C (hexane/EtOAc); $[\alpha]_D^{26}$ –150.7 (c = 0.73, MeOH); t_r 21.98 min; R_f 0.27 (hexane/EtOAc, 1:1). IR (neat) v = 3048, 2956, 2921, 2851, 1590, 1436, 1187, 1167, 1116, 745, 720, 693 cm⁻¹. ¹H NMR (300 MHz, CD₃OD): δ = 7.83–7.77 (m, 4H), 7.62–7.53 (m, 6H), 5.40 (s, 1H), 3.20 (d, J = 13.6 Hz, 2H), 2.04–1.65 (m, 3H), 1.45–1.32 (m, 2H), 1.24–1.12 (m, 3H), 0.81 (d, J = 6.7 Hz, 3H), 0.79 (d, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz, CD₃OD): δ = 134.4 (d, J = 98.9 Hz, ArC), 134.1 (d, J = 2.4 Hz, ArCH), 134.3 (d, J = 98.8 Hz, ArC), 133.0 (d, J = 9.5 Hz, ArCH), 132.9 (d, J = 9.5 Hz, ArCH), 130.6 (d, J = 11.8 Hz, ArCH), 129.9 (d, J = 10.0 Hz, C), 129.7 (d, J = 10.2 Hz, CH), 41.7 (s, CH), 40.0 (d, J = 68.4 Hz, CH₂P), 33.9 (s, CH), 32.8 (d, J = 2.5 Hz, CH₂), 31.6 (s, C), 31.1 (d, J = 2.5 Hz, CH₂), 28.3 (s, CH₂), 21.1 (s, CH₃), 20.9 (s, CH₃). ³¹P NMR (122 MHz, CD₃OD): δ = 37.7 ppm. GC-MS (EI): m/z (%) = 339 (17) [M⁺+1], 338 (57) [M⁺], 295 (31), 281 (45), 269 (12), 207 (64), 203 (16), 202 (100), 201 (60), 191 (13), 156 (11), 78 (13), 77 (17), 73 (12). HRMS (ES+): m/z calcd. for C₂₂H₂₇OP 338.1800, found 338.1789.

General procedure for the hydrothiophosphination of alkenes 1

All reactions were performed using tubes in a multi-reactor system under air. Diphenylphosphine (0.5 mmol, 87 μ L), the alkene (1, 0.5 mmol) and elemental sulfur (0.5 mmol, 16.0 mg) were stirred at 70, 100 or 120 °C overnight (Table 4). The progress of the reaction was monitored by TLC and/or GLC until total or steady conversion was achieved. The resulting mixture was dissolved in EtOAc (20 mL) followed by the addition of silica gel and removal of the excess of solvent in vacuo. The reaction crude absorbed on silicagel was subjected to column chromatography (silica gel, hexane/EtOAc) to give the pure tertiary phosphine sulfides **3**. Compounds **3b**, **3e**, **3x** and **3ac** were purified by preparative chromatography (silica gel, hexane/EtOAc).

Phenethyldiphenylphosphine sulfide (**3a**):¹³ White solid; 156.2 mg (97% yield); m.p. 105.4– 106.4 °C; *t*_r 19.36 min; *R*_f 0.71 (hexane/EtOAc, 7:3). IR (neat) v = 3051, 2928, 1520, 1435, 1104, 757, 711, 620, 610 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.98–7.91 (m, 4H), 7.52–7.41 (m, 6H), 7.29–7.22 (m, 2H), 7.20–7.13 (m, 3H), 2.97–2.86 (m, 2H), 2.81–2.68 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ = 141.0 (d, *J* = 16.9 Hz, ArC), 132.7 (d, *J* = 80.0 Hz, ArC), 131.6 (d, *J* = 2.7 Hz, ArCH), 131.2 (d, *J* = 10.1 Hz, ArCH), 128.8 (ArCH), 128.7 (ArCH), 128.3 (ArCH), 126.5 (ArCH), 34.7 (d, *J* = 54.7 Hz, CH₂P), 28.5 (d, *J* = 1.4 Hz, CH₂CH₂P). ³¹P NMR (122 MHz, CDCl₃): δ = 41.9 ppm. GC-MS (EI): *m/z* (%) = 322 (17) [M⁺], 219 (14), 218 (100), 185 (24), 183 (26), 140 (22). HRMS (ES+): *m/z* calcd. for C₂₀H₂₀PS 322.0945, C₂₀H₂₀PS 323.1023 [M⁺+H]; found 323.1029.

(4-Chlorophenethyl)diphenylphosphine sulfide (3b): Pale yellow oil; 128.2 mg (72% yield); t_r 27.92 min; R_f 0.60 (hexane/EtOAc, 7:3). IR (neat) v = 3065, 3035, 2928, 2838, 1490, 1436, 1407, 1307, 1071, 1013, 935, 805, 737, 704, 690, 607 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.51 (ddd, J = 12.9, 7.9, 1.6 Hz, 4H), 7.56–7.36 (m, 6H), 7.21 (d, J = 8.4 Hz, 2H), 7.10–6.90 (m, 2H), 2.95–2.80 (m, 2H), 2.79–2.67 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ = 139.2 (d, J = 16.4 Hz ArC), 132.5 (d, J = 64.4 Hz, ArC), 132.0 (s, ArCH), 131.6 (d, J = 2.9 Hz, ArCH), 128.7 (s, ArCH), 130.5 (d, J = 10.2 Hz, ArCH), 129.6 (s, ArCH), 128.8 (d, J = 11.3 Hz, ArCH), 35.8 (d, J = 54.8 Hz, CH₂P), 27.9 (d, J = 1 Hz, CH₂). ³¹P NMR (122 MHz, CDCl₃): δ = 41.8 ppm. GC-MS (EI): m/z (%) = 356 (7) [M⁺], 219 (14), 218 (100), 185 (25), 183 (31), 140 (27), 139 (10). HRMS (ES+): m/z calcd. for C₂₀H₁₈CIPS 356.0555, found 356.0571.

(3,4-Dimethoxyphenethyl)diphenylphosphine sulfide (3aa): Pale yellow solid; 166.2 mg (87% yield); m.p. 102.4–103.8 °C; t_r 27.58 min; R_f 0.46 (hexane/EtOAc, 7:3). IR (neat) v = 3050, 2991,

1514, 1467, 1433, 1258, 1236, 1155, 1137, 1102, 1024, 779, 751, 742, 697, 602 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.89–7.80 (m, 4H), 7.50–7.41 (m, 6H), 6.77–6.65 (m, 3H), 3.83 (s, 3H), 3.82 (s, 3H), 2.94–2.85 (m, 2H), 2.79–2.70 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 149.0 (ArC), 147.6 (ArC), 133.4 (d, *J* = 16.4 Hz, ArC), 132.7 (d, *J* = 79.9 Hz, ArC), 131.6 (d, *J* = 2.6 Hz, ArCH), 131.1 (d, *J* = 10.1 Hz, ArCH), 128.7 (d, *J* = 12.1 Hz, ArCH), 120.1 (ArCH), 111.7 (ArCH), 111.4 (ArCH), 56.0 (CH₃), 55.9 (CH₃), 34.8 (d, *J* = 54.2 Hz, CH₂P), 28.0 (*C*H₂CH₂P). ³¹P NMR (162 MHz, CDCl₃): δ = 41.8 ppm. GC-MS (EI): *m/z* (%) = 382 (8) [M⁺], 218 (18), 185 (10), 183 (14), 165 (14), 164 (100), 140 (11). HRMS (ESI): *m/z* calcd. for C₂₂H₂₃O₂PS 382.1145, C₂₂H₂₄O₂PS 383.1235 [M⁺+H]; found 383.1238.

4-[2-(Diphenylphosphorothioyl)ethyl]phenyl acetate (3e): Yellow semi-solid; 123.5 mg (65% yield); t_r 35.63 min; R_f 0.35 (hexane/EtOAc, 7:3). IR (neat) v = 3052, 2961, 2919, 2849, 1754, 1507, 1436, 1367, 1259, 1192, 1164, 1100, 1013, 909, 808, 799, 738, 690, 610 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.85 (ddd, J = 12.9, 7.8, 1.7 Hz, 4H), 7.49–7.48 (m, 6H), 7.16 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8.5 Hz, 2H), 2.96–2.86 (m, 2H), 2.78–2.69 (m, 2H), 2.28 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ = 169.7 (s, CO), 149.2 (s, ArC), 138.6 (d, J = 16.8 Hz ArC), 132.6 (d, J = 80.0 Hz, ArC), 131.7 (d, J = 2.9 Hz, ArCH), 131.2 (d, J = 10.2 Hz, ArCH), 129.3 (s. ArCH), 128.8 (d, J = 12 Hz, ArCH), 121.8 (s, ArCH), 34.6 (d, J = 54.9 Hz, CH₂P), 27.9 (d, J = 1.3 Hz, CH₂), 14.3 (s, CH₃). ³¹P NMR (122 MHz, CDCl₃): δ = 41.8 ppm. GC-MS (EI): m/z (%) = 380 (15) [M⁺], 219 (18), 218 (100), 217 (11), 185 (26), 183 (30), 140 (25), 139 (11). HRMS (ES+): m/z calcd. for C₂₂H₂₁O₂PS 380.1000, found 380.0992.

Methyl 4-[2-(diphenylphosphorothioyl)ethyl]benzoate (3ab): Pale yellow semi solid; 184.3 mg (97% yield); t_r 26.49 min; R_f 0.60 (hexane/EtOAc, 7:3). IR (neat) v = 3055, 2927, 1752, 1507, 1435, 1367, 1192, 1164, 1102, 909, 736, 710, 690, 609 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.88–7.80 (m, 4H), 7.53–7.42 (m, 6H), 7.19–7.13 (m, 2H), 6.98–6.93 (m, 2H), 2.97–2.87 (m, 2H), 2.79–2.69 (m, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 169.7 (CO), 149.2 (ArC), 138.6 (d, J = 16.9 Hz, ArC), 132.6 (d, J = 80.2 Hz, ArC), 131.7 (d, J = 2.6 Hz, ArCH),

131.2 (d, J = 10.1 Hz, ArCH), 129.3 (ArCH), 128.2 (d, J = 12.0 Hz, ArCH), 121.8 (ArCH), 34.6 (d, J = 54.7 Hz, CH₂P), 27.9 (CH₂CH₂P), 21.2 (CH₃). ³¹P NMR (162 MHz, CDCl₃): $\delta = 41.8$ ppm. GC-MS (EI): m/z (%) = 380 (9) [M⁺], 219 (13), 218 (100), 217 (11), 185 (28), 183 (28), 140 (29), 139 (12). HRMS (ESI): m/z calcd. for C₂₂H₂₁O₂PS 380.1000, C₂₂H₂₂O₂PS 381.1078 [M⁺+H]; found 381.1068.

Diphenyl[2-(pyridin-4-yl)ethyl]phosphine sulfide (3f): Pale brown solid; 145.4 mg (90% yield); m.p. 86.2–87.7 °C; t_r 19.36 min; R_f 0.43 (hexane/EtOAc, 2:8). IR (neat) v = 3035, 2927, 1598, 1437, 1414, 1103, 993, 937, 804, 763, 741, 703, 693, 620, 611 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.49–8.41 (m, 2H), 7.90–7.80 (m, 4H), 7.56–7.42 (m, 6H), 7.12–7.06 (m, 2H), 3.00–2.89 (m, 2H), 2.80–2.70 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 149.9 (ArCH), 149.8 (ArC), 132.6 (d, *J* = 81.5 Hz, ArC), 131.8 (d, *J* = 2.9 Hz, ArCH), 131.1 (d, *J* = 10.2 Hz, ArCH), 128.8 (d, *J* = 12.1 Hz, ArCH), 123.7 (ArCH), 33.4 (d, *J* = 55.7 Hz, CH₂P), 27.9 (CH₂CH₂P). ³¹P NMR (162 MHz, CDCl₃): δ = 41.9 ppm. GC-MS (EI): *m*/*z* (%) = 323 (4) [M⁺], 218 (28), 185 (22), 183 (29), 140 (21), 139 (14), 107 (16), 106 (100), 77 (10). HRMS (ESI): *m*/*z* calcd. for C₁₉H₁₈NPS 323.0898, C₁₉H₁₉NPS 324.0976 [M⁺+H]; found 324.0979.

Diphenyl[2-(pyridin-2-yl)ethyl]phosphine sulfide (3g): Pale brown solid; 153.4 mg (95% yield); m.p. 100.5–103.0 °C; t_r 18.18 min; R_f 0.70 (EtOAc). IR (neat) v = 3055, 2917, 2858, 1589, 1436, 1102, 998, 939, 762, 752, 734, 710, 690, 622, 610 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.51–8.46 (m, 1H), 7.93–7.82 (m, 4H), 7.56–7.39 (m, 7H), 7.17–7.11 (m, 1H), 7.10–7.05 (m, 1H), 3.19–3.10 (m, 2H), 3.03–2.93 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 160.1 (d, *J* = 16.1 Hz, ArC), 149.4 (ArCH), 136.5 (ArCH), 132.7 (d, *J* = 80.1 Hz, ArC), 131.6 (d, *J* = 2.7 Hz, ArCH), 131.2 (d, *J* = 10.1 Hz, ArCH), 128.7 (d, *J* = 12.1 Hz, ArCH), 123.4 (ArCH), 121.6 (ArCH), 31.9 (d, *J* = 56.7 Hz, CH₂P), 30.7 (CH₂CH₂P). ³¹P NMR (162 MHz, CDCl₃): δ = 42.7 ppm. GC-MS (EI): m/z (%) = 323 (1) [M⁺], 183 (11), 107 (11), 106 (100). HRMS (ESI): m/z calcd. for C₁₉H₁₈NPS 323.0898, C₁₉H₁₉NPS 324.0976 [M⁺+H]; found 324.0985.

Diphenyl[2-(phenylthio)ethyl]phosphine sulfide (3v):¹⁴ Pale yellow oil; 141.6 mg (80% yield); t_r 22.49 min; R_f 0.69 (hexane/EtOAc, 7:3). IR (neat) v = 3050, 1574, 1479, 1435, 1103, 733, 708, 687, 620, 609 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.82–7.72 (m, 4H), 7.53–7.42 (m, 8H), 7.28–7.24 (m, 2H), 7.22–7.17 (m, 1H), 3.20–3.10 (m, 2H), 2.78–2.69 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 135.0 (ArC), 132.3 (d, *J* = 80.2 Hz, ArC), 131.8 (d, *J* = 3.0 Hz, ArCH), 131.1 (d, *J* = 10.3 Hz, ArCH), 129.6 (ArCH), 129.3 (ArCH), 128.9 (d, *J* = 12.2 Hz, ArCH), 126.6 (ArCH), 32.7 (d, *J* = 51.2 Hz, CH₂P), 26.8 (CH₂CH₂P). ³¹P NMR (162 MHz, CDCl₃): δ = 40.5 ppm. GC-MS (EI): *m/z* (%) = 357 (21) [M⁺], 219 (15), 218 (100), 217 (14), 185 (31), 183 (36), 140 (31), 139 (28), 109 (15), 107 (10), 77 (14), 63 (11). HRMS (ESI): *m/z* calcd. for C₂₀H₁₉PS 354.0666, C₂₀H₂₀PS 355.0744 [M⁺+H]; found 355.0754.

Diphenyl(3-phenylpropyl)phosphine sulfide (3x): Orange oil; 112.6 mg (67% yield); *t*_r 24.19 min; *R*_f 0.57 (hexane/EtOAc, 7:3). IR (neat) v = 3045, 3026, 2918, 2848, 1494, 1437, 1118, 906, 723, 683 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.79–7.73 (ddd, *J* = 12.8, 8.0, 1.5 Hz, 4H), 7.46–7.28 (m, 6H), 7.24–7.12 (m, 5H), 2.75 (t, *J* = 7.4 Hz, 2H), 2.44–2.23 (m, 2H), 2.01–1.93 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ = 140.8 (s, ArC), 132.8 (d, *J* = 80.0 Hz, ArC), 131.4 (d, *J* = 2.5 Hz, ArCH), 131.0 (d, *J* = 10.1 Hz, ArCH), 128.6 (d, *J* = 12.2 Hz, ArCH), 128.5 (s, ArCH), 128.4 (s, ArCH), 126.1 (s, ArCH), 36.3 (d, *J* = 16.7 Hz, *C*H₂CH₂P), 31.7 (d, *J* = 74.8 Hz, CH₂P), 23.7 (d, *J* = 1.7 Hz, *C*H₂CH₂CH₂P). ³¹P NMR (122 MHz, CDCl₃): δ = 42.6 ppm. GC-MS (EI): *m/z* (%) = 336 (19) [M⁺], 231 (10), 219 (14), 218 (100), 217 (12), 199 (23), 185 (16), 183 (24), 140 (14). HRMS (ES+): *m/z* calcd. for C₂₁H₂₁PS 336.1102, found 336.1097.

Octyldiphenylphosphine sulfide (3y): Yellow semi solid; 74.3 mg (45% yield); t_r 16.17 min; R_f 0.71 (hexane/EtOAc, 9:1). IR (neat) v = 3042, 2923, 2853, 1550, 1435, 1102, 739, 690, 621, 610 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.86–7.78 (m, 4H), 7.51–7.41 (m, 6H), 2.48–2.39 (m, 2H), 1.67–1.57 (m, 2H), 1.42–1.33 (m, 2H), 1.29–1.17 (m, 8H), 0.85 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 133.2 (d, J = 79.5 Hz, ArC), 131.5 (d, J = 2.6 Hz, ArCH), 131.2 (d,

J = 10.0 Hz, ArCH), 128.7 (d, J = 11.8 Hz, ArCH), 32.7 (d, J = 56.4 Hz, CH₂P), 31.9, 30.8, 30.7, 29.2, 22.7 (5 × CH₂), 22.3 (d, J = 2.5 Hz, CH₂CH₂P), 14.2 (CH₃). ³¹P NMR (162 MHz, CDCl₃): $\delta = 42.7$ ppm. GC-MS (EI): m/z (%) = 330 (6) [M⁺], 219 (15), 218 (100), 217 (13), 185 (17), 183 (20), 140 (18), 139 (13). HRMS (ESI): m/z calcd. for C₂₀H₂₇PS 330.1571, C₂₀H₂₈PS 331.1649 [M⁺+H]; found 331.1659.

Octan-2-yldiphenylphosphine sulfide (3y'): Yellow semi solid; 90.7 mg (55% yield); t_r 16.51 min; R_f 0.79 (hexane/EtOAc, 9:1). IR (neat) v = 3025, 2957, 2927, 2858, 1539, 1435, 1095, 716, 688, 652 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.03–7.90 (m, 4H), 7.52–7.41 (m, 6H), 3.58–3.45 (m, 1H), 1.67–1.48 (m, 2H), 1.35–1.13 (m, 8H), 1.28 (d, *J* = 6.9 Hz, 3H), 0.85 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 135.4 (d, *J* = 84.9 Hz, ArC), 131.8 (dd, *J* = 3.1, 1.3 Hz, ArCH), 131.6 (dd, *J* = 11.2, 6.7 Hz, ArCH), 128.6 (dd, *J* = 13.2, 1.1 Hz, ArCH), 44.2 (d, *J* = 1.3 Hz, CHP), 38.3 (d, *J* = 5.3 Hz, CH₂), 31.8, 29.1, 26.6 (3 × CH₂), 23.1 (d, *J* = 5.3 Hz, CH₃), 22.7 (CH₂), 14.2 (CH₃). ³¹P NMR (162 MHz, CDCl₃): δ = 61.8 ppm. GC-MS (EI): *m/z* (%) = 330 (1) [M⁺], 252 (10), 251 (38), 250 (52), 219 (18), 218 (87), 217 (100), 185 (25), 183 (35), 140 (22), 139 (50), 77 (10), 63 (12). HRMS (ESI): *m/z* calcd. for C₂₀H₂₇PS 330.1571, C₂₀H₂₈PS₂ 331.1649 [M⁺+H]; found 331.1647.

Diphenyl(tetrahydro-2*H***-pyran-2-yl)phosphine sulfide (3ac)**: White solid; 90.6 mg (60% yield); m.p. 148.0–151.0 °C (hexane/EtOAc); t_r 17.85 min; R_f 0.70 (hexane/EtOAc, 7:3). IR (neat) v = 3046, 2947, 2901, 2861, 1437, 1313, 1105, 1098, 1080, 1037, 757, 746, 708, 692, 646 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 8.04 (ddd, J =12.5, 8.1, 1.5 Hz, 2H), 7.85 (ddd, J =12.5, 8.1, 1.5 Hz, 2H), 7.51–7.41 (m, 6H), 4.34–4.29 (m, 1H), 4.09–4.06 (m, 1H), 3.51–3.45 (m, 1H), 2.16–2.11 (m, 1H), 1.93–1.90 (m, 1H), 1.56–1.53 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): δ = 133.1 (d, J = 9.7 Hz, ArCH), 132.2 (d, J = 78.4 Hz, ArC), 131.7 (d, J = 9.7 Hz, ArCH), 129.2 (d, J = 78.4 Hz, ArC), 128.4 (d, J = 12.0 Hz, ArCH), 128.1 (d, J = 12.0 Hz, ArCH), 79.8 (d, J = 74.7 Hz, CHP), 70.2 (d, J = 10.6 Hz, CH₂O), 25.5 (s, CH₂), 24.5 (s, CH₂), 23.4 (d, J = 13.2 Hz, CH₂). ³¹P NMR (122 MHz, CDCl₃): δ = 43.2 ppm. GC-MS (EI): m/z (%) = 302 (8) [M⁺], 219 (17), 218

(100), 186 (16), 185 (18), 183 (26), 140 (12), 139 (17), 107 (12), 85 (80), 67 (15), 57 (14), 55 (14). HRMS (ES+): m/z calcd. for C₁₇H₁₉OPS 302.0894, found 302.0887.

General procedure for the hydrophosphination of alkynes 4

All reactions were performed using tubes in a multi-reactor system under argon. Diphenylphosphine (0.5 mmol, 87 μ L) and the alkyne (4, 0.5 mmol) were stirred at 70 °C overnight (Table 5). The progress of the reaction was monitored by TLC and/or GLC until total or steady conversion was achieved. The resulting mixture was dissolved in EtOAc (20 mL) followed by the addition of silica gel and removal of the excess of solvent in vacuo. The reaction crude absorbed on silicagel was subjected to column chromatography (silica gel, hexane/EtOAc) to give the pure alkenyl phosphines **5**.

Characterisation of compounds 5

(**Z**)-**Diphenyl(styryl)phosphine (5a**):¹⁵ White solid; 113.8 mg (79% yield); m.p. 79.5–81.0 °C; t_r 12.33 min; R_f 0.49 (hexane). IR (KBr) v = 3068, 3043, 3027, 1593, 1560, 1491, 1474, 780, 739, 698 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.53–7.40 (m, 6H), 7.37–7.24 (m, 10H), 6.46 (dd, J = 12.7, 2.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ = 144.2 (d, J = 19.1 Hz, CH=CHP), 139.5 (d, J = 9.6 Hz, ArCP), 137.6 (d, J = 2.3 Hz, ArC), 132.9 (d, J = 18.9 Hz, ArCH), 129.6 (d, J = 17.0 Hz, CH=CHP), 129.5 (ArCH), 128.7 (ArCH), 128.6 (ArCH), 128.2 (ArCH). ³¹P NMR (121 MHz, CDCl₃): δ = -24.8 ppm. GC-MS (EI): m/z (%) = 288 [M⁺] (68), 287 (100), 183 (16), 179 (13), 178 (21), 167 (16), 133 (16), 108 (15), 107 (15). HRMS (ES+): m/z calcd. for C₂₀H₁₇P 288.1068, found 288.1071.

(Z)-(4-Methylstyryl)diphenylphosphine (5b): White solid; 110.2 mg (73% yield); m.p. 86.2– 90.2 °C; t_r 15.00 min; R_f 0.74 (hexane/EtOAc, 9.5:0.5). IR (neat) v = 3064, 2970, 1475, 1422, 790, 733, 690, 682, 674 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.46–7.39 (m, 6H), 7.34–7.29 (m, 7H), 7.12 (d, J = 7.9 Hz, 2H), 6.38 (dd, J = 12.6, 3.0 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 144.2 (d, J = 19.3 Hz, *C*H=CHP), 139.6 (d, J = 9.5 Hz, ArC), 138.2 (ArC), 134.3 (ArC), 132.8 (d, J = 18.9 Hz, ArCH), 129.6 (d, J = 8.5 Hz, ArCH), 128.9 (ArCH), 128.6 (d, J = 6.7 Hz, ArCH), 128.5 (ArCH), 128.4 (d, J = 15.6 Hz, CH=CHP), 21.4 (CH₃). ³¹P NMR (162 MHz, CDCl₃): $\delta = -24.8$ ppm. GC-MS (EI): m/z (%) = 303 [M⁺+1] (15), 302 (75) [M⁺], 301 (100), 178 (10). HRMS (ES+): m/z calcd. for C₂₁H₁₉P 302.1224, C₂₁H₂₀P 303.1303 [M⁺+H]; found 303.1302.

(Z)-(3-Methylstyryl)diphenylphosphine (5c): White solid; 132.8 mg (88% yield); m.p. 59.7– 61.2 °C; t_r 14.84 min; R_f 0.74 (hexane/EtOAc, 9.5:0.5). IR (neat) v = 3065, 2977, 1599, 1476, 1432, 799, 738, 693, 683, 674 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.48–7.42 (m, 4H), 7.36– 7.28 (m, 9H), 7.19 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H), 6.44 (dd, J = 12.7, 2.6 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 144.2 (d, J = 18.9 Hz, CH=CHP), 139.6 (d, J = 9.7 Hz, ArC), 137.7 (ArC), 136.9 (d, J = 2.3 Hz, ArC), 132.9 (d, J = 19.0 Hz, ArCH), 130.5 (d, J= 7.4 Hz, ArCH), 129.4 (d, J = 16.0 Hz, CH=CHP), 128.9 (ArCH), 128.7 (d, J = 6.8 Hz, ArCH), 128.6 (ArCH), 128.1 (ArCH), 126.7 (d, J = 8.9 Hz, ArCH), 21.6 (CH₃). ³¹P NMR (162 MHz, CDCl₃): δ = -24.5 ppm. GC-MS (EI): m/z (%) = 302 (65) [M⁺], 303 (12), 301 (100). HRMS (ES+): m/z calcd. for C₂₁H₁₉P 302.1224, C₂₁H₂₀P 303.1303 [M⁺+H]; found 303.1310.

(Z)-(4-Methoxystyryl)diphenylphosphine (5d): White solid; 136.7 mg (86% yield); m.p. 137.3– 138.9 °C; t_r 16.80 min; R_f 0.66 (hexane/EtOAc, 9.5:0.5). IR (neat) v = 3068, 2927, 2848, 1603, 1507, 1178, 1027, 747, 239, 694 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.49–7.42 (m, 6H), 7.35–7.30 (m, 7H), 6.85 (d, J = 8.8 Hz, 2H), 6.31 (dd, J = 12.6, 2.9 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 159.7 (ArC), 143.8 (d, J = 19.3 Hz, CH=CHP), 139.6 (d, J = 9.3 Hz, ArC), 132.8 (d, J = 18.7 Hz, ArCH), 131.2 (d, J = 8.9 Hz, ArCH), 129.9 (ArC), 128.7 (d, J = 6.6 Hz, ArCH), 128.6 (ArCH), 126.9 (d, J = 15.1 Hz, CH=CHP), 113.7 (ArCH), 55.4 (CH₃). ³¹P NMR (162 MHz, CDCl₃): δ = -24.7 ppm. GC-MS (EI): m/z (%) = 319 [M⁺+1] (22), 318 (100) [M⁺], 317 (83), 210 (24), 209 (13), 207 (21), 197 (17), 183 (10), 167 (12), 165 (12), 138 (10). HRMS (ES+): m/z calcd. for C₂₁H₁₉OP 318.1174, C₂₁H₂₀OP 319.1252 [M⁺+H]; found 319.1266.

Me₂N PPh₂

N,*N*-Dimethyl-4-[(*Z*)-2-(diphenylphosphino)vinyl]aniline (5e): Yellow solid; 143.9 mg (87% yield); m.p. 156.0–158.8 °C; t_r 20.56 min; R_f 0.55 (hexane/EtOAc, 9.5:0.5). IR (neat) v = 3050,

2887, 1611, 1519, 1432, 1199, 1158, 736, 694 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49-7.42$ (m, 6H), 7.34–7.27 (m, 7H), 6.64 (d, J = 8.9 Hz, 2H), 6.15 (dd, J = 12.6, 3.0 Hz, 1H), 2.94 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 150.4$ (ArC), 144.3 (d, J = 19.2 Hz, CH=CHP), 140.1 (d, J = 9.5 Hz, ArC), 132.8 (d, J = 18.6 Hz, ArCH), 131.0 (d, J = 9.4 Hz, ArCH), 128.6 (ArCH), 128.5 (d, J = 14.7 Hz, CH=CHP), 125.5 (ArC), 123.8 (d, J = 14.2 Hz, ArCH), 111.8 (ArCH), 40.4 (CH₃). ³¹P NMR (162 MHz, CDCl₃): $\delta = -23.9$ ppm. GC-MS (EI): m/z (%) = 332 [M⁺+1] (18), 331 (74) [M⁺], 330 (18), 229 (19), 223 (100), 207 (11). HRMS (ES+): m/z calcd. for C₂₂H₂₂NO 331.1490, C₂₂H₂₃NO 332.1568 [M⁺+H]; found 332.1576.

Diphenyl[*(E)*-1-phenylprop-1-en-2-yl]phosphine (5g):¹⁶ White solid; 96.6 mg (64% yield); m.p. 84.9–88.8 °C; t_r 14.39 min; R_f 0.71 (hexane/EtOAc, 9.5:0.5). IR (neat) v = 3045, 2957, 1570, 1476, 1431, 741, 693 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.42–7.27 (m, 15H), 7.25–7.21 (m, 1H), 1.79 (dd, J = 2.8, 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 143.3 (d, J = 29.1 Hz, CH=CP), 137.5 (d, J = 6.5 Hz, ArC), 136.9 (d, J = 12.2 Hz, ArC), 134.1 (d, J = 20.9 Hz, CH₃CP), 133.3 (d, J = 18.7 Hz, ArCH), 129.5 (d, J = 7.4 Hz, ArCH), 128.5 (ArCH), 128.4 (d, J = 6.4 Hz, ArCH), 127.9 (ArCH), 127.5 (ArCH), 24.5 (d, J = 4.0 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ = -13.4 ppm. GC-MS (EI): m/z (%) = 303 [M⁺+1] (11), 302 (67) [M⁺], 301 (100), 183 (14), 108 (12). HRMS (ES+): m/z calcd. for C₂₁H₁₉P 302.1224, C₂₁H₂₀P 303.1303 [M⁺+H]; found 303.1307.

(Z)-Oct-1-en-1-yldiphenylphosphine (5h): Colourless oil; 91.8 mg (62% yield); t_r 11.62 min; R_f 0.84 (hexane/EtOAc, 9:1). IR (neat) v = 3072, 3047, 2949, 2929, 2851, 1617, 1437, 370 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.43–7.36 (m, 4H), 7.34–7.27 (m, 6H), 6.43 (ddt, J = 23.8, 11.3, 7.3 Hz, 1H), 6.21–6.13 (m, 1H), 2.50–2.37 (m, 2H), 1.45–1.17 (m, 8H), 0.85 (t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ = 148.2 (d, J = 24.4 Hz, CH=CHP), 139.7 (d, J = 9.2 Hz, ArC), 132.7 (d, J = 18.7 Hz, ArCH), 128.5 (d, J = 6.6 Hz, ArCH), 128.3 (ArCH), 127.8 (d, J = 9.0 Hz, CH=CHP), 31.8 (CH₂), 31.2 (d, J = 21.1 Hz, CH₂CH), 29.3 (CH₂), 29.0 (CH₂), 22.7 (CH₂), 14.2 (CH₃). ³¹P NMR (122 MHz, CDCl₃): δ = –31.4 ppm. GC-MS (EI): m/z (%) = 296 [M⁺] (7), 253 (20), 240 (14), 239 (68), 226 (24), 225 (15), 200 (26), 199 (23), 187 (16), 186 (100), 185 (10), 183 (62), 152 (12), 147 (17), 145 (10), 133 (38), 129 (16), 128 (15), 121 (11), 117 (17), 116 (21),

115 (51), 109 (64), 108 (91), 107 (39), 105 (11), 91 (56), 83 (12), 77 (14), 65 (12), 51 (10). HRMS (ES+): *m*/*z* calcd. for C₂₀H₂₅P 296.1694, found 296.1698.

(Z)-(2-Cyclohexylvinyl)diphenylphosphine oxide (5i): White solid; 95.0 mg (61% yield); m.p. 140.0–143.6 °C; t_r 18.15 min; R_f 0.42 (hexane/EtOAc, 3:7). IR (neat) v = 3061, 3021, 2918, 2839, 1619, 1435, 1181, 1118, 718, 691, 604 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.82–7.68 (m, 4H), 7.60–7.33 (m, 6H), 6.47 (ddd, J = 40.7, 12.9, 10.5 Hz, 1H), 5.99 (dd, J = 25.3, 12.9 Hz, 1H), 2.98 (q, J = 10.8 Hz, 1H), 1.73–1.44 (m, 5H), 1.32–0.93 (m, 5H). ¹³C NMR (101 MHz, CDCl₃): δ = 159.6 (*C*H=CHP), 134.7 (d, J = 103.7 Hz, ArC), 131.4 (d, J = 2.8 Hz, ArCH), 130.9 (d, J = 9.9 Hz, ArCH), 128.4 (d, J = 12.0 Hz, ArCH), 119.1 (d, J = 101.2 Hz, CH=CHP), 39.1 (d, J = 7.5 Hz, *C*HCH₂), 32.1 (d, J = 1.8 Hz, CH₂), 25.7 (CH₂), 25.0 (CH₂). ³¹P NMR (162 MHz, CDCl₃): δ = 21.2 ppm. GC-MS (EI): m/z (%) = 311 (15) [M⁺+1], 310 (73) [M⁺], 207 (21), 202 (100), 201 (23), 183 (12), 155 (17), 125 (7), 77 (7). HRMS (ES+): m/z calcd. for C₂₀H₂₃OP 310.1487, found 310.1485.

(**Z**)-[2-(1-Hydroxycyclohexyl)vinyl]diphenylphosphine oxide (5j): White solid; 93.0 mg (60% yield); m.p. 145.3–147.0 °C; t_r 20.20 min; R_f 0.63 (hexane/EtOAc, 3:7). IR (neat) v = 3244, 3236, 2930, 1437, 1157, 1116, 990, 732, 710, 694, 655 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (ddd, J = 12.2, 8.0, 1.4 Hz, 4H), 7.55–7.32 (m, 6H), 6.87 (dd, J = 40.6, 14.0 Hz, 1H), 6.25 (s, 1H), 5.94 (dd, J = 24.7, 14.0 Hz, 1H), 1.96–1.20 (m, 10H). ¹³C NMR (101 MHz, CDCl₃): δ = 162.2 (*C*H=CHP), 133.0 (d, J = 107.0 Hz, ArC), 131.8 (d, J = 2.7 Hz, ArCH), 131.1 (d, J = 10.1 Hz, ArCH), 128.6 (d, J = 12.2 Hz, ArCH), 118.1 (d, J = 98.3 Hz, CH=*C*HP), 71.7 (d, J = 6.6 Hz, CO), 37.9, 25.5, 21.7 (CH₂). ³¹P NMR (162 MHz, CDCl₃): δ = 26.7 ppm. GC-MS (EI): m/z (%) = 309 [M⁺–17] (22), 308 (100) [M⁺–18], 292 (14), 279 (21), 231 (17), 203 (11), 202 (29), 201 (19), 183 (30), 155 (20), 141 (11), 125 (12), 91 (12), 77 (20). HRMS (ES+): m/z calcd. for C₂₀H₂₃O₂P 326.1436, C₂₀H₂₁OP [M⁺–18] 308.1330, found 308.1316.

General procedure for the hydrothiophosphination of alkynes 4

All reactions were performed using tubes in a multi-reactor system under air. Diphenylphosphine (0.5 mmol, 87 μ L), the alkyne (4, 0.5 mmol) and elemental sulfur (0.5 mmol, 16.0 mg) were

stirred at 70 °C overnight (Table 6). The progress of the reaction was monitored by TLC and/or GLC until total or steady conversion was achieved. The resulting mixture was dissolved in EtOAc (20 mL) followed by the addition of silica gel and removal of the excess of solvent in vacuo. The reaction crude absorbed on silicagel was subjected to column chromatography (silica gel, hexane/EtOAc) to give the pure alkenyl phosphine sulfides **6**.

Characterisation of compounds 6

S^{-P}-Ph Ph

(**Z**)-**Diphenyl(styryl)phosphine sulfide** (**6a**):¹⁷ White solid; 153.6 mg (96% yield); m.p. 104.0– 105.0 °C; t_r 18.15 min; R_f 0.65 (hexane/EtOAc, 7:3). IR (neat) v = 3046, 2986, 2926, 1595, 1489, 1434, 1097, 782, 727, 700, 688, 656, 620 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.90–7.81 (m, 4H), 7.54–7.46 (m, 3H), 7.37–7.26 (m, 6H), 7.08–6.97 (m, 3H), 6.41 (dd, J = 17.8, 13.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ = 146.6 (d, J = 2.1 Hz, *C*H=CHP), 134.6 (d, J = 7.0 Hz, ArC), 133.1 (d, J = 85.4 Hz, ArC), 131.3 (d, J = 10.5 Hz, ArCH),131.2 (d, J = 3.1 Hz, ArCH), 130.3 (ArCH), 128.9 (ArCH), 128.4 (d, J = 12.6 Hz, ArCH), 127.6 (ArCH), 123.2 (d, J = 81.8 Hz, CHP). ³¹P NMR (122 MHz, CDCl₃): δ = 30.3 ppm. GC-MS (EI): m/z (%) = 321 (23) [M⁺+1], 320 (100) [M⁺], 319 (12), 287 (15), 218 (63), 211 (31), 185 (27), 183 (61), 140 (20), 133 (37), 107 (11). HRMS (ES+): m/z calcd. for C₂₀H₁₇PS 320.0789, C₂₀H₁₈PS 321.0867 [M⁺+H]; found 321.0877.

(*Z*)-(4-Methylstyryl)diphenylphosphine sulfide (6b):¹⁷ Pale yellow solid; 130.3 mg (78% yield); m.p. 118.0–122.0 °C; t_r 18.15 min; R_f 0.57 (hexane/EtOAc, 8:2). IR (neat) v = 3050, 3000, 1591, 1436, 1099, 823, 741, 715, 709, 691, 631, 601 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.92–7.86 (m, 4H), 7.45–7.41 (m, 3H), 7.37–7.30 (m, 6H), 6.87 (d, J = 8.0 Hz, 2H), 6.34 (dd, J = 18.0, 13.6 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 146.8 (d, J = 1.8 Hz, CH=CHP), 139.2 (ArC), 133.4 (d, J = 85.4 Hz, ArC), 131.7 (d, J = 6.8 Hz, ArCH), 131.3 (d, J = 10.9 Hz, ArCH), 131.1, 130.6, 128.5, 128.4 (4 × ArCH), 121.7 (d, J = 82.2 Hz, CHP), 21.4 (CH₃). ³¹P NMR (162 MHz, CDCl₃): δ = 30.4 ppm. GC-MS (EI): m/z (%) = 335 (19) [M⁺+1], 334 (78) [M⁺], 301 (12), 226 (11), 225 (67), 218 (62), 185 (45), 184 (14), 183 (100), 179 (11),

178 (10), 152 (13), 147 (51), 140 (37), 139 (14), 134 (17), 133 (14), 115 (24), 104 (14), 77 (12), 65 (11), 63 (15), 51 (11). HRMS (ES+): m/z calcd. for C₁₈H₁₉PS 334.0945, C₁₈H₂₀PS 335.1023 [M⁺+H]; found 335.1028.

(**Z**)-(2-Chlorostyryl)diphenylphosphine sulfide (6k): Pale yellow solid; 164.6 mg (93% yield); m.p. 83.2–86.7 °C; t_r 20.11 min; R_f 0.72 (hexane/EtOAc, 8:2). IR (neat) v = 3060, 2991, 1467, 1435, 1097, 1051, 744, 736, 720, 704, 693, 675, 648 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.88–7.77 (m, 4H), 7.59 (d, J = 13.3 Hz, 1H), 7.48 (d, J = 13.3 Hz, 1H), 7.33–7.26 (m, 6H), 7.07 (dd, J = 8.0, 1.1 Hz, 1H), 6.94 (td, J = 7.6, 1.6 Hz, 1H), 6.84 (td, J = 7.6, 1.0 Hz, 1H), 6.60 (dd, J= 18.2, 13.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 143.1 (d, J = 2.7 Hz, *C*H=CHP), 133.5 (d, J = 7.2 Hz, ArC), 132.8 (ArC), 132.3 (ArCH), 132.4 (d, J = 85.5 Hz, ArC), 131.4 (d, J = 10.4 Hz, ArCH), 131.3 (ArCH), 129.9 (ArCH), 128.5 (ArCH), 128.4 (d, J = 12.6 Hz, ArCH), 126.1 (d, J = 81.8 Hz, CHP), 126.0 (ArCH). ³¹P NMR (162 MHz, CDCl₃): δ = 29.5 ppm. GC-MS (EI): m/z(%) = 354 (1) [M⁺], 320 (24), 319 (100), 183 (17). HRMS (ES+): m/z calcd. for C₂₀H₁₆CIPS 354.0399, C₂₀H₁₇CIPS 355.0477 [M⁺+H]; found 355.0480.

(Z)-(4-Methoxystyryl)diphenylphosphine sulfide (6d): Yellow solid; 157.5 mg (90% yield); m.p. 75.2–77.4 °C; t_r 21.19 min; R_f 0.58 (hexane/EtOAc, 7:3). IR (neat) v = 3045, 3006, 2957, 2927, 2838, 1604, 1585, 1435, 1310, 1260, 1170, 1097, 1031, 839, 751, 741, 718, 705, 691, 651, 628 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.93–7.85 (m, 4H), 7.53–7.49 (m, 2H), 7.40–7.29 (m, 7H), 6.61–6.56 (m, 2H), 6.24 (dd, J = 18.0, 13.6 Hz, 1H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 160.3 (ArC), 146.5 (d, J = 1.8 Hz, CH=CHP), 133.5 (d, J = 85.4 Hz, ArC), 132.6 (ArCH), 131.3 (d, J = 10.6 Hz, ArCH), 131.2 (d, J = 3.0 Hz, ArCH), 128.5 (d, J = 12.5 Hz, ArCH), 127.3 (d, J = 6.9 Hz, ArCH), 119.9 (d, J = 82.7 Hz, CHP), 113.1 (ArCH), 55.3 (CH₃). ³¹P NMR (162 MHz, CDCl₃): δ = 30.4 ppm. GC-MS (EI): m/z (%) = 351 (21) [M⁺+1], 350 (89) [M⁺], 318 (10), 317 (13), 242 (16), 241 (100), 218 (47), 210 (12), 185 (38), 184 (11), 183 (76), 165 (14), 163 (36), 152 (13), 150 (14), 140 (29), 139 (10), 133 (17), 121 (10), 107 (13), 77 (11), 63 (12). HRMS (ES+): m/z calcd. for C₂₁H₁₉OPS 350.0894, C₂₁H₂₀OPS 351.0972 [M⁺+H]; found 351.0968.

(Z)-Methyl 4-[2-(diphenylphosphorothioyl)vinyl]benzoate (6l): Pale yellow solid; 173.8 mg (92% yield); m.p. 109.9–114.4 °C; t_r 25.16 min; R_f 0.33 (hexane/EtOAc, 8:2). IR (neat) v = 3042, 2995, 2946, 1715, 1608, 1437, 1275, 1100, 871, 707, 689, 637, 608 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.90–7.80 (m, 4H), 7.73–7.66 (m, 2H), 7.58–7.51 (m, 2H), 7.50–7.46 (m, 1H), 7.41–7.27 (m, 6H), 6.56 (dd, J = 17.3, 13.6 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 166.6 (ArC), 145.0 (d, J = 2.1 Hz, CH=CHP), 138.9 (d, J = 7.0 Hz, ArC), 132.7 (d, J = 85.6 Hz, ArC), 131.5 (d, J = 2.7 Hz, ArCH), 131.3 (d, J = 10.7 Hz, ArCH), 130.0 (ArCH), 129.9 (ArC), 128.8 (ArCH), 128.5 (d, J = 12.6 Hz, ArCH), 126.1 (d, J = 80.6 Hz, CHP), 52.2 (CH₃). ³¹P NMR (162 MHz, CDCl₃): δ = 29.9 ppm. GC-MS (EI): m/z (%) = 379 (16) [M⁺+1], 378 (61) [M⁺], 269 (18), 238 (11), 219 (13), 218 (90), 207 (15), 191 (15), 185 (44), 184 (15), 183 (100), 178 (14), 152 (12), 140 (32), 139 (14), 134 (13), 133 (14), 129 (10), 108 (10), 107 (15), 63 (11). HRMS (ES+): m/z calcd. for C₂₂H₁₉O₂PS 378.0843, C₂₂H₂₀O₂PS 379.0922 [M⁺+H]; found 379.0920.

(Z)-Diphenyl[4-(trifluoromethyl)styryl]phosphine sulfide (6f): Yellow solid; 58 mg (30% yield); m.p. 150.2–152.7 °C; t_r 19.53 min; R_f 0.42 (hexane/EtOAc, 8:2). IR (neat) v = 3056, 2919, 2848, 1436, 1321, 1115, 1097, 1065, 858, 717, 704, 689, 615 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.89-7.66$ (m, 4H), 7.54 (d, J = 8.4 Hz, 2H), 7.50–7.15 (m, 9H), 6.60 (dd, J = 17.3, 13.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): 144.2 (d, J = 2.5 Hz, CH=CHP), 137.9 (d, J = 8.2 Hz, ArC), 132.3 (d, J = 85.5 Hz, ArC), 131.9 (m, ArC), 31.4 (d, J = 3.0 Hz, ArCH), 131.2 (d, J = 10.7 Hz, ArCH), 130.0 (d, J = 1.0 Hz, ArCH), 128.4 (d, J = 12.6 Hz, ArCH), 126.6 (d, J = 80.5 Hz, CHP), 124.4 (q, J = 3.8 Hz, ArCH) 123.7 (q, J = 272.0 Hz, ArC). ³¹P NMR (162 MHz, CDCl₃): $\delta = 29.8$ ppm. GC-MS (EI): m/z (%) = 389 (23) [M⁺+1], 388 (100) [M⁺], 356 (81), 355 (93), 279 (16), 218 (63), 201 (29), 191 (15), 185 (30), 184 (11), 183 (78), 140 (20), 108 (22), 107 (14). HRMS (ES+): m/z calcd. for C₂₁H₁₆F₃PS 388.0662, found 388.0652.

(Z)-Oct-1-en-1-yldiphenylphosphine sulfide (6h):¹⁷ Colorless oil; 147.6 mg (90% yield); t_r 15.69 min; R_f 0.66 (hexane/EtOAc, 8:2). IR (neat) v = 3042, 2951, 2924, 2854, 1611, 1435, 1100, 735, 717, 706, 690 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.94–7.83 (m, 4H), 7.50–7.40 (m, 6H), 6.58 (ddt, J = 42.9, 12.4, 7.6 Hz, 1H), 6.27 (ddt, J = 23.5, 12.4, 1.5 Hz, 1H), 2.29 (qdd, J = 7.6, 2.9, 1.5 Hz, 2H), 1.35–1.06 (m, 8H), 0.82 (t, J = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ = 153.6 (*C*H=CHP), 134.6 (d, J = 84.2 Hz, ArC), 131.4 (ArCH), 131.3 (d, J = 9.0 Hz, ArCH), 128.6 (d, J = 12.4 Hz, ArCH), 123.0 (d, J = 84.5 Hz, CHP), 31.6 (CH₂), 31.0 (d, J = 9.4 Hz, CH₂), 28.9, 28.4, 22.6 (CH₂), 14.2 (CH₃). ³¹P NMR (122 MHz, CDCl₃): δ = 28.4 ppm. GC-MS (EI): m/z (%) = 328 (29) [M⁺], 271 (43), 219 (17), 218 (100), 217 (35), 185 (16), 183 (35), 139 (13). HRMS (ES+): m/z calcd. for C₂₀H₂₅PS 328.1415, C₂₀H₂₆PS 329.1493 [M⁺+H]; found 329.1498.

(Z)-(2-Cyclohexylvinyl)diphenylphosphine sulfide (6i): Pale yellow solid; 97.8 mg (60% yield); m.p. 63.8–66.8 °C; t_r 16.20 min; R_f 0.58 (hexane/EtOAc, 9:1). IR (neat) v = 3040, 2929, 2920, 1611, 1099, 734, 719, 708, 690 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.93–7.85 (m, 4H), 7.49–7.39 (m, 6H), 6.42–6.24 (m, 1H), 6.17 (dd, J = 23.6, 12.4 Hz, 1H), 2.76–2.61 (m, 1H), 1.60–1.49 (m, 5H), 1.29–1.23 (m, 1H), 1.02–0.93 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ = 157.8 (ArC), 134.8 (d, J = 84.2 Hz, ArC), 131.3 (d, J = 10.5 Hz, ArCH), 131.2 (d, J = 3.1 Hz, CH=CHP), 128.6 (d, J = 12.4 Hz, ArCH), 121.3 (d, J = 84.6 Hz, CHP), 39.3 (d, J = 31.3 Hz, CH), 31.1 (d, J = 1.0 Hz, CH₂), 25.8, 25.1 (CH₂). ³¹P NMR (162 MHz, CDCl₃): δ = 28.8 ppm. GC-MS (EI): m/z (%) = 326 (29) [M⁺], 219 (19), 218 (100), 217 (20), 185 (28), 183 (47), 140 (25), 139 (16), 133 (12), 109 (10), 108 (14), 107 (10). HRMS (ES+): m/z calcd. for C₂₀H₂₃PS 326.1258, C₂₀H₂₄PS 327.1336 [M⁺+H]; found 327.1340.

References

- 1. A. Schmidt, A. R. Nçdling and G. Hilt, Angew. Chem. Int. Edn., 2015, 54, 801-804.
- 2. F. Alonso, Y. Moglie, G. Radivoy and M. Yus, J. Org. Chem., 2011, 76, 8394-8405.
- 3. F. Alonso, P. Riente and M. Yus, Eur. J. Org. Chem., 2009, 6034-6042.
- 4. A. Leyva-Pérez, J. A. Vidal-Moya, J. R. Cabrero-Antonino, S. S. Al-Deyab, S. I. Al-Resayes and A. Corma, *J. Organomet. Chem.*, 2011, **696**, 362–367.
- 5. M. Hayashi, Y. Matsuura and Y. Watanabe, *Tetrahedron Lett.*, 2004, 45, 9167–9169.
- 6. M. O. Shulyupin, M. A. Kazankova and I. P. Beletskaya, Org. Lett., 2002, 4, 761–763.
- 7. H. Hu and C. Cui, Organometallics, 2012, 31, 1208–1211.
- E. I. Goryunov, G. V. Bodrin, I. B. Goryunova, Yu. V. Nelyubina, P. V. Petrovskii,[†] T. V. Strelkova, A. S. Peregudov, A. G. Matveeva, M. P. Pasechnik, S. V. Matveev and E. E. Nifant'ev, *Russ. Chem. Bull., Int. Edn.*, 2013, 62, 780–791.
- 9. M. Hayashi, Y. Matsuura and Y. Watanabe, Tetrahedron Lett., 2004, 45, 9167–9169.
- 10. K. Heesche-Wagner and T. N. Mitchell, J. Organomet. Chem., 468, 99–106.
- A. Baber, J. G. de Vries, A. G. Orpen, P. G. Pringle and K. von der Luehe, *Dalton Trans.*, 2006, 4821–4828.
- 12. T. Bunlaksananusorn and P. Knochel, *Tetrahedron Lett.*, 2002, 43, 5817–5819.
- A. Perrier, V. Comte, C. Moïse, P. Richard and P. Le Gendre, *Eur. J. Org. Chem.*, 2010, 1562–1568.
- S. F. Malysheva, N. K. Gusarova, A. V. Artem'ev, N. A. Belogorlova, A. I. Albanov, T. N. Borodina, V. I. Smirnov and B. A. Trofimov, *Eur. J. Org. Chem.*, 2014, 2516–2521.
- 15. M. A. Kazankova, I. V. Efimova, A. N. Kochetkov, V. V. Afanas'ev and I. P. Beletskaya, *Russ. J. Org. Chem.*, 2002, **38**, 1465–1474.
- 16. M. Hayashi, Y. Matsuura and Y. Watanabe, J. Org. Chem., 2006, 71, 9248–9251.
- A. V. Artem-ev, S. F. Malysheva, N. K. Gusarova, N. A. Belogorlova, V. A. Shagun, A. I. Albanov and B. A. Trofimov, *Synthesis*, 2015, 47, 263–271.

NMR spectra of new compounds 2

NMR spectra of compounds 3

S45

δ (ppm) . 160

 $150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 \\ \stackrel{\circ}{\delta}(ppm)$

NMR spectra of compounds 5

S64

S66

4.5 4.0 f1 (ppm) 1.00-

3.0

2.5

3.5

5.14

2.0

1.5

5.09

1.0

0.5

0.0

6.09

7.5

7.0

4.08

8.0

9.0

8.5

1.02

6.0

5.5

5.0

1.02-

6.5

NMR spectra of compounds 6

37.0 36.5 36.0 35.5 35.0 34.5 34.0 33.5 33.0 32.5 32.0 31.5 31.0 30.5 30.0 29.5 29.0 28.5 28.0 27.5 27.0 26.5 26.0 25.5 25.0 24.5 24.0 fl (ppm)

36.5 36.0 35.5 35.0 34.5 34.0 33.5 33.0 32.5 32.0 31.5 31.0 30.5 30.0 29.5 29.0 28.5 28.0 27.5 27.0 26.5 26.0 25.5 25.0 24.5 24.0 23.5 23.0 δ(ppm)

35.5 35.0 34.5 34.0 33.5 33.0 32.5 32.0 31.5 31.0 30.5 30.0 29.5 29.0 28.5 28.0 27.5 27.0 26.5 26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 $\delta(\text{ppm})$

Figure S2. Kinetic isotope effect graphic for the synthesis of 2a.

Figure S3. Effect of the styrene (1a)/diphenylphosphine (DPP) ratio on the formation of 2a.

Figure S4. Initial rates determined for the reaction of styrene (**1a**) and diphenylphosphine (DPP).

Figure S5. Plot showing the X-ray structure and atomic numbering for compound 2z.

- Chemical formula: C₂₂H₂₇OP
- Formula weight: M = 338.40
- Crystal system: monoclinic
- Unit-cell dimensions: a = 5.7190(3), b = 17.9432(10), c = 9.0209(5) Å
- Unit cell volume: $U = 914.22(9) \text{ Å}^3$
- Temperature: T = 100(2)
- Space group symbol: P2₁
- No. of formula units in unit cell: Z = 2
- Number of reflections measured: 19038
- Number of independent reflections: 3750
- $R_{int} = 0.0271$
- $wR_2 = 0.0741$

Figure S6. Plot showing the X-ray structure and atomic numbering for compound 6a.

- Chemical formula: C₂₀H₁₇PS
- Formula weight: M = 320.37
- Crystal system: monoclinic
- Unit-cell dimensions: a = 14.697(3), b = 6.6112(11), c = 17.826(3) Å
- Unit cell volume: $U = 1719.3(5) \text{ Å}^3$
- Temperature: T = 298(1)
- Space group symbol: P 21/n
- No. of formula units in unit cell: Z = 4
- Number of reflections measured: 3025
- Number of independent reflections: 2399
- $R_{int} = 0.0538$ $wR_2 = 0.1062$