Supporting information

Selective Hydrodeoxygenation of Lignin-Derived Phenols to Alkyl Cyclohexanols over Bifunctional Catalyst

Guang-Yue Xu, † Jian-Hua Guo, † Yan-Chao Qu, Ying Zhang*, Yao Fu and Qing-xiang Guo

Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, P. R. China, Fax: 86-551-6360-6689; Tel: 86-551-6360-3463; E-mail: <u>zhzhying@ustc.edu.cn</u>

⁺ These authors contributed equally to this work.

RuZr 6.37 RuMg 10.75 RuLa 7.87 RuZrLa-4 9.29 RuZrLa-2 9.30 RuZrLa-1 9.40	Catalyst	рН
RuLa7.87RuZrLa-49.29RuZrLa-29.30	RuZr	6.37
RuZrLa-49.29RuZrLa-29.30	RuMg	10.75
RuZrLa-2 9.30	RuLa	7.87
	RuZrLa-4	9.29
RuZrLa-1 9.40	RuZrLa-2	9.30
	RuZrLa-1	9.40

 Table S2.
 The metal losses in the liquid residue.

Catalyst	Ru/%	Zr/%	La/%
RuZr	0.052	0.011	0
RuZrLa-4	0.049	0.007	0.125
RuZrLa-2	0.041	0.017	0.032
RuZrLa-1	0.047	0.018	0.061
RuLa	0.042	0	0.903

 Table S3. Hydrogen desorption of catalysts.

Catalys t	H ₂ desorption/mmol(H ₂)*g(catalyst) ⁻¹
RuZr	0.355
RuZrLa-4	0.554
RuZrLa-2	0.610
RuZrLa-1	0.579
RuLa	0.517

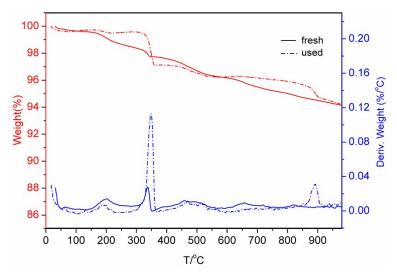
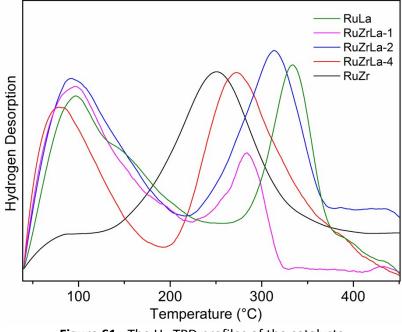



Figure S1. TGA curves of fresh and used RuZrLa-2 catalyst.

Figure S1. The H_2 -TPD profiles of the catalysts.