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I. CO, capture of different amines in water

1. PEHA with CO; in water
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Fig. S1 13C NMR spectrum of PEHA-CO;-H,0 in D,0



2. Branched PElIgy, with CO; in water
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Fig. S2 3C NMR spectrum of branched PEIgyo-CO,-H,0 in D,O



3. PAA10’000 with COZ in water
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Fig. S3 13C NMR spectrum of PAAl(),()()()-COZ-Hzo in DQO



4. DABCO with CO. in water
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Fig. S4 13C NMR spectrum of DABCO-CO,-H,0 in D,0
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5. DMAP with CO; in water

|
B M~
N_ + 0=C=0 + H0

(DMAP)

~

tIZ—

| X

N HCO;ICO52

Bicarbonate/carbonate

DMAP-H*

DMAP-H*

DMAP-H*

HCO5/CO3*

DMAP-H*

200 190 180 170 160 150 140 130 120 110 f11%;7m)90 80 70 60 50 40 30 20 10

Fig. S5 13C NMR spectrum of DMAP-CO,-H,0 in D,O



6. MDEA with CO in water
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Fig. S6 3C NMR spectrum of MDEA-CO,-H,0 in D,0.



7. TBA with CO; in water
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Fig. S7 3C NMR spectrum of TBA-CO,-H,0 in D,0. Biphasic mixture was obtained
after adding H,O to TBA. After 30 min of CO, capture, again biphasic reaction mixture
remained. 3C NMR of the reaction mixture was taken in D,O



8. DsBA with CO, in water
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Fig. S8 13C NMR spectrum of DsBA-CO,-H,0 in D,0. Biphasic mixture was obtained
after adding H,O to TBA. After 30 min of CO, capture, again biphasic reaction mixture
remained. 13C NMR of the reaction mixture was taken in D,O



9. DBU with CO; in water
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Fig. S9 13C NMR spectrum of DBU-CO,-H,O in D,0.
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10. TMG with CO; in water
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Fig. $10 '3C NMR spectrum of TMG-CO,-H,O in D,O.
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11. MIm with CO; in water
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Fig. S11 3C NMR spectrum of MIm-CO,-H,0 in D,0O
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II. Synthesis of FeBr,PNP*r(CO) and FeHBrPNP*r(CO)

Complexes FeBr,[PNP#7|CO and FeHBr[PNP?]CO were prepared following the
literature procedure. !

1) Synthesis of FeBr,PNP?*r(CO)

Anhydrous FeBr; (510mg, 2.36 mmol) was weighed in to a two-necked 100 mL
schlenk flask charged with a stir bar in an argon glove box. 30 mL of degassed dry
THF was introduced to the flask under nitrogen atmosphere. To the above solution,
9 mL of PNP?" (10 wt% in THF) was added and stirred at room temperature under
nitrogen atmosphere for 10-15 min to get a off-white precipitate. The flask was
frozen using liquid nitrogen, subjected to vacuum, backfilled with CO (1 atm) and
slowly thawed to RT. The mixture was stirred for 2 h to get a dark blue solution. The
solvent was evaporated under vacuum at RT to obtain a blue powder, which was
dissolved in minimum amount of THF and filtered through a short pad of celite. The
filtrate was concentrated under vacuum and the resulting blue solid was further
washed with pentane and dried in vacuum to get 1.24 g (95%) of product as a blue
solid. NMR ('H, 3'P and 3C) of the solid was recorded in a 500 MHz Varian
spectrometer. The spectroscopic data is consistent with the literature report. -2
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Fig. S12 'H NMR of FeBr,PNP*"(CO) in CD,Cl,.
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Fig. S14 3C NMR of FeBr,PNP™"(CO) in CD,Cl,.

14



2) Synthesis of FeHBr[PNP*r]CO, 4

710 mg (1.29 mmol) of FeBr,PNP*(CO) and 50 mg NaBH, were added to a schlenk
flask equipped with a stir bar in an Ar glovebox. 60 mL dry ethanol was introduced
in to the solution at 0 °C to give a green solution, which changed its color to a
homogenous orange solution in 20 min. The mixture was stirred at room
temperature for 16 h. Ethanol was removed under vacuum to give an orange
powder, which was dissolved in toluene and filtered through a short pad of celite to
give an orange solution. The solvent was pumped off under vacuum and washed
with hexane to give FeHBr[PNP"]CO (402 mg, 0.855 mmol) as orange solid in 66%
yield. NMR (1H, 31P and 13C) of the solid was recorded in a 500 MHz spectrometer.

A major isomer with a hydride peak at -22.7 ppm (83%) and a minor isomer at -
22.5 ppm (17%) were obtained. The spectroscopic data is consistent with the
literature report.?
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Fig. S15 'H NMR of FeHBrPNP?r(CO) in C¢Ds.
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Fig. S16 3'P NMR of FeHBrPNP™®'(CO) in C¢Ds.
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Fig. S17 3C NMR of FeHBrPNP**(CO) in C¢D¢. Only signals corresponding to the
major isomer was clearly visible in the 13C NMR.
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III. Hydrogenation of captured CO; to formate
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Fig. $18 'H NMR spectrum of the reaction mixture obtained after the hydrogenation
of PEHA with 75 bar 3:1 H,/CO; mixture at 70 °C using catalyst 1 in D;0. 100mg
trimethoxybenzene was added as internal standard.
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Fig. S19 'H NMR spectrum of the reaction mixture obtained after the hydrogenation

of bi(carbonate) and carbamate salts of PEIgy, with 50 bar H; using catalyst 1 in D,0
at 70 °C. 0.9 g DMF added as internal standard.
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Fig. S20 'H NMR spectrum of the reaction mixture obtained after the hydrogenation
of bi(carbonate) and carbamate salts of PEHA with 80 bar H; using catalyst 4 in D,0
at 50 °C. 100 mg trimethoxybenzene was added as internal standard.
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Fig. S21 'H NMR spectrum of the reaction mixture obtained after the hydrogenation

of bicarbonate salts of TMG with 50 bar H; using catalyst 1 in D,0 at 55 °C using 2
umol of catalyst 1. 100 mg trimethoxybenzene was added as internal standard.
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IV. Recycling studies in biphasic conditions

Fig. S22 H,0 and 2-MeTHF biphasic reaction mixture obtained with DABCO and
catalyst 1 (Ru-PNP). DABCO stayed in the aqueous layer (lower layer) and the
catalyst 1 remained in the organic layer (upper layer). Organic layer was reused for
subsequent cycles.

Fig. S23 The product, formate salt of DABCO, obtained as white solid after the
removal of water from the aqueous layer using lyophilizer.
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Fig. S24 'H NMR spectrum of the organic layer of the biphasic reaction mixture after
the evaporation of Me-THF using catalyst 1 in THF-dsg.
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Fig. S25 3P NMR spectrum of the organic layer of the biphasic reaction mixture
after the evaporation of Me-THF using catalyst 1 in THF-dg.
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Fig. $26 3C NMR spectrum of the organic layer of the biphasic reaction mixture
after the evaporation of Me-THF using catalyst 1 in THF
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Fig. S27 H,0 and 2-MeTHF biphasic reaction mixture obtained with DABCO and
catalyst 4 (Fe-PNP). DABCO stayed in the aqueous layer (colorless lower layer) and
the catalyst 4 remained in the organic layer (yellow upper layer). Organic layer was
reused for subsequent cycles.
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Fig. $28 'H NMR spectrum of the aqueous layer after the hydrogenation of
bicarbonate salts of DABCO with 50 bar H;, using catalyst 4 in D,0 (with 100 mg
imidazole as internal standard).
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Fig. $29 'H NMR spectrum of the organic layer of the biphasic reaction mixture after
the evaporation of Me-THF using catalyst 4 in C¢D.
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Fig. S30 3'P NMR spectrum of the organic layer of the biphasic reaction mixture
after the evaporation of Me-THF using catalyst 4 in C¢De.
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Fig. S31 3C NMR spectrum of the organic layer of the biphasic reaction mixture
after the evaporation of Me-THF using catalyst 4 in C¢De.
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