Supporting Information

CO₂ Capture by Amines in Aqueous Media and its Subsequent Conversion to Formate With Reusable Ruthenium and Iron Catalysts

Jotheeswari Kothandaraman, Alain Goeppert, Miklos Czaun, George A. Olah* and G. K. Surya Prakash*

- I. CO₂ capture of different amines in water, Page 2-12
- II. Synthesis of FeBr₂PNP^{*iPr*}(CO) and FeHBrPNP^{*iPr*}(CO), Page 13-16 Procedure and Characterization
- III. Hydrogenation of captured CO₂ to formate, Page 16-20
- IV. Recycling studies in biphasic conditions, Page 21-26
- V. References, Page 26

I. CO_2 capture of different amines in water

1. PEHA with CO_2 in water

Bicarbonate/carbonate and carbamate salts of PEHA formed

Fig. S1 $^{\rm 13}C$ NMR spectrum of PEHA-CO_2-H_2O in D_2O

2. Branched PEI_{800} with CO_2 in water

Bicarbonate/carbonate and carbamate salts of PEI formed

Fig. S2 13 C NMR spectrum of branched PEI₈₀₀-CO₂-H₂O in D₂O

3. $PAA_{10,000}$ with CO_2 in water

Bicarbonate/carbonate and carbamate salts of PAA formed

Fig. S3 ^{13}C NMR spectrum of PAA_{10,000}\text{-}CO_2\text{-}H_2O in D_2O

4. DABCO with CO_2 in water

Fig. S4 $^{13}\mathrm{C}$ NMR spectrum of DABCO-CO₂-H₂O in D₂O

5. DMAP with CO_2 in water

Fig. S5 $^{13}\mathrm{C}$ NMR spectrum of DMAP-CO₂-H₂O in D₂O

6. MDEA with CO_2 in water

Fig. S6 ¹³C NMR spectrum of MDEA-CO₂-H₂O in D₂O.

7. TBA with CO_2 in water

Fig. S7 ¹³C NMR spectrum of TBA-CO₂-H₂O in D₂O. Biphasic mixture was obtained after adding H₂O to TBA. After 30 min of CO₂ capture, again biphasic reaction mixture remained. ¹³C NMR of the reaction mixture was taken in D₂O

8. DsBA with CO_2 in water

Fig. S8 ¹³C NMR spectrum of DsBA-CO₂-H₂O in D₂O. Biphasic mixture was obtained after adding H₂O to TBA. After 30 min of CO₂ capture, again biphasic reaction mixture remained. ¹³C NMR of the reaction mixture was taken in D₂O

9. DBU with CO_2 in water

Bicarbonate/carbonate

Fig. S9 ¹³C NMR spectrum of DBU-CO₂-H₂O in D₂O.

10. TMG with CO_2 in water

Bicarbonate/carbonate

Fig. S10 13 C NMR spectrum of TMG-CO₂-H₂O in D₂O.

11. MIm with CO_2 in water

Bicarbonate/carbonate

Fig. S11 $^{\rm 13}\rm C$ NMR spectrum of MIm-CO₂-H₂O in D₂O

II. Synthesis of FeBr₂PNP^{*i*Pr}(CO) and FeHBrPNP^{*i*Pr}(CO)

Complexes $FeBr_2[PNP^{iPr}]CO$ and $FeHBr[PNP^{iPr}]CO$ were prepared following the literature procedure. ¹

1) Synthesis of FeBr₂PNP^{iPr}(CO)

Anhydrous FeBr₂ (510mg, 2.36 mmol) was weighed in to a two-necked 100 mL schlenk flask charged with a stir bar in an argon glove box. 30 mL of degassed dry THF was introduced to the flask under nitrogen atmosphere. To the above solution, 9 mL of PNP^{*iPr*} (10 wt% in THF) was added and stirred at room temperature under nitrogen atmosphere for 10-15 min to get a off-white precipitate. The flask was frozen using liquid nitrogen, subjected to vacuum, backfilled with CO (1 atm) and slowly thawed to RT. The mixture was stirred for 2 h to get a dark blue solution. The solvent was evaporated under vacuum at RT to obtain a blue powder, which was dissolved in minimum amount of THF and filtered through a short pad of celite. The filtrate was concentrated under vacuum and the resulting blue solid was further washed with pentane and dried in vacuum to get 1.24 g (95%) of product as a blue solid. NMR (¹H, ³¹P and ¹³C) of the solid was recorded in a 500 MHz Varian spectrometer. The spectroscopic data is consistent with the literature report.^{1,2}

Fig. S12 ¹H NMR of FeBr₂PNP^{iPr}(CO) in CD₂Cl₂.

Fig. S13 ³¹P NMR of FeBr₂PNP^{*i*Pr}(CO) in CD_2Cl_2 .

230 228 226 224 222 220 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 ft (ppm)

Fig. S14 13 C NMR of FeBr₂PNP^{*i*Pr}(CO) in CD₂Cl₂.

2) Synthesis of FeHBr[PNP^{iPr}]CO, 4

710 mg (1.29 mmol) of FeBr₂PNP^{*i*Pr(CO)} and 50 mg NaBH₄ were added to a schlenk flask equipped with a stir bar in an Ar glovebox. 60 mL dry ethanol was introduced in to the solution at 0 °C to give a green solution, which changed its color to a homogenous orange solution in 20 min. The mixture was stirred at room temperature for 16 h. Ethanol was removed under vacuum to give an orange powder, which was dissolved in toluene and filtered through a short pad of celite to give an orange solution. The solvent was pumped off under vacuum and washed with hexane to give FeHBr[PNP^{*i*Pr}]CO (402 mg, 0.855 mmol) as orange solid in 66% yield. NMR (¹H, ³¹P and ¹³C) of the solid was recorded in a 500 MHz spectrometer. A major isomer with a hydride peak at -22.7 ppm (83%) and a minor isomer at – 22.5 ppm (17%) were obtained. The spectroscopic data is consistent with the literature report.²

Fig. S15 ¹H NMR of FeHBrPNP^{*i*Pr}(CO) in C_6D_6 .

Fig. S16 ³¹P NMR of FeHBrPNP^{iPr}(CO) in C₆D₆.

Fig. S17 ¹³C NMR of FeHBrPNP^{*i*Pr}(CO) in C_6D_6 . Only signals corresponding to the major isomer was clearly visible in the ¹³C NMR.

III. Hydrogenation of captured CO₂ to formate

Fig. S18 ¹H NMR spectrum of the reaction mixture obtained after the hydrogenation of PEHA with 75 bar 3:1 H_2/CO_2 mixture at 70 °C using catalyst **1** in D_2O . 100mg trimethoxybenzene was added as internal standard.

Fig. S19 ¹H NMR spectrum of the reaction mixture obtained after the hydrogenation of bi(carbonate) and carbamate salts of PEI_{800} with 50 bar H₂ using catalyst **1** in D₂O at 70 °C. 0.9 g DMF added as internal standard.

Fig. S20 ¹H NMR spectrum of the reaction mixture obtained after the hydrogenation of bi(carbonate) and carbamate salts of PEHA with 80 bar H_2 using catalyst **4** in D_2O at 50 °C. 100 mg trimethoxybenzene was added as internal standard.

Fig. S21 ¹H NMR spectrum of the reaction mixture obtained after the hydrogenation of bicarbonate salts of TMG with 50 bar H₂ using catalyst **1** in D₂O at 55 °C using 2 μ mol of catalyst **1**. 100 mg trimethoxybenzene was added as internal standard.

IV. Recycling studies in biphasic conditions

Fig. S22 H_2O and 2-MeTHF biphasic reaction mixture obtained with DABCO and catalyst **1** (Ru-PNP). DABCO stayed in the aqueous layer (lower layer) and the catalyst **1** remained in the organic layer (upper layer). Organic layer was reused for subsequent cycles.

Fig. S23 The product, formate salt of DABCO, obtained as white solid after the removal of water from the aqueous layer using lyophilizer.

Fig. S24 ¹H NMR spectrum of the organic layer of the biphasic reaction mixture after the evaporation of Me-THF using catalyst $\mathbf{1}$ in THF-d₈.

Fig. S25 ³¹P NMR spectrum of the organic layer of the biphasic reaction mixture after the evaporation of Me-THF using catalyst **1** in THF-d₈.

Fig. S26 ^{13}C NMR spectrum of the organic layer of the biphasic reaction mixture after the evaporation of Me-THF using catalyst 1 in THF

Fig. S27 H_2O and 2-MeTHF biphasic reaction mixture obtained with DABCO and catalyst **4** (Fe-PNP). DABCO stayed in the aqueous layer (colorless lower layer) and the catalyst **4** remained in the organic layer (yellow upper layer). Organic layer was reused for subsequent cycles.

Fig. S28 ¹H NMR spectrum of the aqueous layer after the hydrogenation of bicarbonate salts of DABCO with 50 bar H_2 using catalyst **4** in D_2O (with 100 mg imidazole as internal standard).

Fig. S29 ¹H NMR spectrum of the organic layer of the biphasic reaction mixture after the evaporation of Me-THF using catalyst 4 in C_6D_6 .

Fig. S30 ³¹P NMR spectrum of the organic layer of the biphasic reaction mixture after the evaporation of Me-THF using catalyst **4** in C_6D_6 .

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 11 (ppm)

Fig. S31 ¹³C NMR spectrum of the organic layer of the biphasic reaction mixture after the evaporation of Me-THF using catalyst **4** in C_6D_6 .

V. References

^{1.} S. Chakraborty, H. Dai, P. Bhattacharya, N. T. Fairweather, M. S. Gibson, J. A. Krause and H. Guan, *J. Am. Chem. Soc.*, 2014, **136**, 7869–7872.

^{2.} E. Alberico, P. Sponholz, C. Cordes, M. Nielsen, H. J. Drexler, W. Baumann, H. Junge and M. Beller, *Angew. Chem. Int. Ed.*, 2013, **52**, 14162–14166.