One-pot, template-free synthesis of robust superhydrophobic

polymer monolith with adjustable hierarchical porous structure

Yong Li^{a,b}, Zhaozhu Zhang ^{a*}, Bo Ge ^{a,b}, Xuehu Men ^{c*}, and Qunji Xue ^a

^a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese

Academy of Sciences, Tianshui Road 18th, Lanzhou 730000, PR China.

^b University of Chinese Academy of Sciences, Beijing 100039, PR China.

^c School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China

^{*} Corresponding author. Tel.: +86 931 4968098 E-mail address: <u>zzzhang@licp.cas.cn</u> (Z. Z); <u>menxh@lzu.edu.cn</u> (X. H. Men)

Movie S1. Movie illustrates that the superhydrophobic polymer monolith suffers from water impact by a strong water flow for more than 8 min.

Movie S2. The polymer monolith can be used for painting superhydrophobic surface on both planar and tender substrates like a chalk. The painted sandpaper, copper mesh, latex glove and A4 paper show excellent superhydrophobicity.

Figure S1 Photos of DVB, SiO₂ and polymer monolith dissolved in ethyl acetate.

As shown in Figure S1, DVB monomers were completely dissolved in ethyl acetate and good dispersion was found for SiO₂, whereas, no dissolution can be found for polymer monolith in ethyl acetate.

Figure S2 FT-IR spectra of the PDVB-SiO₂-110 samples

e area (m ² /g) Pore volume (cm ³ /g)
1.15
1.35
1.52
1.59
1.54
1.40

 Table S1 BET surface area and pore volume of all samples prepared under different

 solvothermal temperature

The related structure and performances of polymer monoliths containing different amount of SiO₂ nanoparticles

In our study, SiO₂ nanoparticles were used mainly as a mechanically reinforced material and could increase the BET surface area and pore volume of polymer monolith. The related structure and performances were characterized after adjust the amount of SiO₂. Firstly, the polymer monoliths containing different content of SiO₂ particles were obtained at the solvothermal temperature of 110 °C to investigate mechanical enhancements. All the obtained polymer monoliths take on white color and cylinder morphology (hence denoted as PDVB-SiO₂-x, x is the mass of SiO₂, x= 0, 0.1, 0.2, 0.3, 0.4). However, PDVB-SiO₂-0.4 sample is fragile and crack can be observed obviously, which indicates low mechanical strength (Fig. S3b). The axial compressive stress of other samples was provided by an electronical universal material testing machine DY35. As shown in Table S2, the compressive stress increases with respect to the pure PDVB (2.6×10^5 Pa for PDVB-SiO₂-0.1 and up to

 3.3×10^5 Pa for PDVB-SiO₂-0.2, which is contributed by the mechanical reinforcing effect of SiO₂ nanoparticles. While further increasing the content of SiO₂ particles would decrease its mechanical strength. The compressive stress of PDVB-SiO₂-0.3 decreases to 2.0×10^5 Pa even lower than pure PDVB monolith. Therefore, definite SiO₂ nanoparticles can reinforce mechanical properties of polymer monolith. The reinforce properties result from high dispersion and the mechanical reinforcing effect of fumed SiO₂ nanoparticles. The SiO₂ particles can uniformly embedded in PDVB during the polymerization, which result in uniform stress distribution and minimizes the presence of stress concentration center.^{1,2} Whereas, excessive SiO₂ nanoparticles lead to aggregate and increase stress concentration center which caused a fragile monolith.

Secondly, we focused on their influence on the porosity of polymer monoliths Fig. S4 shows N₂ isotherms and pore size distribution of PDVB-SiO₂-x (x is the mass of SiO₂, x= 0, 0.1, 0.2, 0.3). All these samples behave H4 hysteresis loop and a slow increase in the adsorption amount occurs during the relative pressure range of 0.4-0.8, indicating the presence of mesopores. Significantly, the nitrogen adsorption capacity still increases at high relative pressure ($P/P_0 > 0.8$) indicating the presence of large pores. Pore size distribution of all samples estimated from desorption branches of the isotherms³ reveals that the hierarchical porosity mainly ranges from 10-100 nm, indicating broad size distributions (Fig. S4b). Their BET surface area and pore volume were shown in Table S2, all the samples show large BET surface areas (728.7-820.5 m²/g) and high pore volume (1.39-1.59 m³/g). PDVB-SiO₂-0.2 exhibits

highest BET surface area (820.5 m²/g) and pore volume (1.59 cm³/g). This should be attributed to the definite SiO₂ nanoparticles can reduce the shrink during the removal of ethyl acetate and benefit the formation of pores. Hence, SiO₂ nanoparticles mainly as a mechanically reinforced material as well as benefit improving BET surface area and pore volume. PDVB-SiO₂-0.2 is the optimal conditions for fabricating hierarchically porous polymer monoliths with highest BET surface area and pore volume.

Figure. S3 Images of polymer monolith (a) PDVB-SiO₂-0.2 and (b) PDVB-SiO₂-0.4

Figure. S4 (a) N₂ isotherms and (b) pore size distribution of (A) PDVB-SiO₂-0, (B) PDVB-SiO₂-0.1, (C) PDVB-SiO₂-0.2, (D) PDVB-SiO₂-0.3, samples. Isotherms of (B)-(D) have been offset by 100 cm³/g, 200 cm³/g and 400 cm³/g, respectively, along the vertical axis for clarity.

Samples	Compressive stress (Pa)	$S_{BET}(m^2/g)$	Pore volume (cm ³ /g)
PDVB-SiO ₂ -0	2.6×10 ⁵	801.2	1.39
PDVB-SiO ₂ -0.1	2.9×10 ⁵	805.2	1.41
PDVB-SiO ₂ -0.2	3.3×10 ⁵	820.5	1.59
PDVB-SiO ₂ -0.3	2.0×10 ⁵	728.7	1.42

Table S2 Compressive stress, BET surface area and pore volume of all samples

containing different content of SiO_2 nanoparticles

Table S3 The comparison between present work and previous reported polymer or

Materials	Method	S_{BET} (m ² /g)	WCA	Highlight and comments
Elastic carbon foam ⁴	Pyrolysis of melamine sponge	268		High porosity, excellent elasticity harsh conditions
CNT sponge ⁵	CVD	300- 400	156°	High-porosity, mechanical stability, special equipment , high cost
Carbon nanofiber aerogel ⁶	Template hydrothermal method, freeze-drying and pyrolysis	547	136°	High sorption capacity, mechanical stability, multistep procedures, harsh conditions
TCF aerogel ⁷	Pyrolysis of cotton			Natural source, strong sorption capability, high temperature and poor mechanical performance
Spongy graphene ⁸	Freeze-drying and high temperature reduction		153°	Excellent absorption capacity, multistep procedures, high cost, low mechanical stability

carbon aerogels and porous polymer

Graphene/carbon nanotube hybrid foam ⁹	CVD and templating method	Macroporous	152.3°	Macroporous structure, high oil capacity, special equipment, multistep procedures, chemical etching
Magnetic Cellulose Sponge ¹⁰	Templating method, freeze-drying, extra modification		156°	W/O emulsions separation, multistep procedures, time- consuming and special equipment
Porous Polymer Coatings ¹¹	Photoinitiated copolymerization in the presence of porogens		172°	Applied to various surfaces, time-saving, low adhesive with substrates and easily damaged
Macroporous PDMS/MWNT Nanocomposite ²	Templating method	Macroporous	153.4°	Magnetic properties, improved mechanical properties, relative low oil capacity, hard template
Silanized melamine sponges ¹²	Solution-immersion method	Macroporous	151°	Cost-effective, recyclable oil capacity
Melamine sponge ¹³	two-step immersion coating	Macroporous	163°	Flame-retardant and oil removal, expensive and harmful fluorinated material
PU@Fe3O4@SiO ₂ @FP Sponges ¹⁴	CVD and dip-coating	Macroporous	157°	Magnetic, oil removal, multistep procedures, low oil capacity
PDMS Sponges ¹⁵	Templating method		151.5°	Selective Oil Absorption, high compressibility and stretchability, hard template needed
Magnetic foams ¹⁶	Pyrolyzing polyelectrolyte grafted polyurethane sponge		152°	Magnetic, high oil capacity, ultralow-density, time- consuming, high temperature
Porous polymers ¹⁷	Polymerization of the vinyl monomers using hard template	82.4		Hierarchical porous structures low oil capacity, hard template needed
Porous PDVB-SiO ₂ monolith (our work)	Solvothermal method in the absence of template, surfactant or stabilizer	820.5	161.3°	Tunable hierarchical porosity, durable superhydrophobic property, environment benign

Abrasion test

To check the robustness of the polymer monolith against mechanical forces, an abrasion test have been performed. Figure S5 illustrates the method of the abrasion test: 800 mesh sandpaper served as an abrasion surface. The coated fabric was subjected to a1.0 kg weight and was kept in close contact with the sandpaper. Then the polymer monolith sample was dragged in one direction with a speed and abrasion length of 2 cm/s⁻¹ and 10 cm, respectively.

Figure S5 Schematic illustration of the methodology of the abrasion test.

Reference

- X. Z. Ye, H. Wang, K. Zheng, Z. F. Wu, H.F. Zhou, K. H. Tian, Z. Su, X. Y. Tian, Composites Science and Technology, 2016, **124**, 1-9.
- A. Turco, C. Malitesta, G. Barillaro, A. Greco, A. Maffezzoli, E. Mazzotta, J. Mater. Chem. A, 2015, 3, 17685-17696.
- 3. M. Kruk, M. Jaroniec, Chem. Mater, 2003, 15, 2942-2949.
- S. L. Chen, G. H. He, H. Hu, S. Q. Jin, Y. Zhou, Y. Y. He, S. J. He, F. Zhao, H.
 Q. Hou, Energy Environ. Sci., 2013, 6, 2435-2439.
- X. C. Gui, J. Q. Wei, K. L. Wang, A. Y. Cao, H. W. Zhu, Y. Jia, Q. K. Shu, D. H. Wu, Adv. Mater., 2010, 22, 617-621.
- Z. Y. Wu, C. Li, H. W. Liang, Y. N. Zhang, X. Wang, J. F. Chen, S. H. Yu, Sci. Rep., 2014, 4.
- H. Bi, Z. Yin, X. Cao, X. Xie, C. Tan , X. Huang , B. Chen, F. Chen , Q. Yang, X. Bu, X. Lu, L. Sun, H. Zhang, Adv. Mater., 2013, 25, 5916-5921.
- H. C. Bi, X. Xie, K. B. Yin, Y. L. Zhou, S. Wan, R. S. Ruoff, L. T. Sun, J. Mater. Chem. A, 2014, 2, 1652-1656
- X. C. Dong, J. Chen, Y. W. Ma, J. Wang, M. B. Chan-Park, X. M. Liu, L. H. Wang, W. Huang, P. Chen, Chem. Commun., 2012, 48, 10660-10662.
- H. L. Peng, H. Wang, J. N. Wu, G. H. Meng, Y. X. Wang, Y. L. Shi, Z. Y. Liu, X. Guo, Ind. Eng. Chem. Res. 2016, 55, 832-838.
- 11. P. A. Levkin, F. Svec, J. M. J. Frechet, Adv. Funct. Mater., 2009, 19, 1993-1998.
- V. H. Pham and J. H. Dickerson, ACS Appl. Mater. Interfaces, 2014, 6, 14181-14188.

- C. P. Ruan, K. L. Ai, X. B. Li, L. H. Lu, Angew. Chem. Int. Ed., 2014, 53, 5556 -5560.
- L. Wu, L. X. Li, B. C. Li, J. P. Zhang, A. Q. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 4936-4946.
- X. Zhao, L. X. Li, B. C. Li, J. P. Zhang, A. Q. Wang, J. Mater. Chem. A, 2014, 2, 18281-18287.
- 16. N. Chen, Q. M. Pan, ACS Nano, 2013, 7, 6875-6883.
- 17. K. Sato, Y. Oaki, H. Imai, Chem. Commun., 2015, 51, 7919-7922.