Electronic Supplementary Information

Hierarchical hollow nanostructured core@shell recyclable catalysts y-

Fe₂O₃@LDH@Au₂₅-*x* for highly efficient alcohol oxidation

Shuangtao Yin, Jin Li, and Hui Zhang*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

*E-mail: huizhang67@gst21.com; Fax: +8610-6442 5385; Tel:+8610-6442 5872

TG, ESI-MS, ICP and BET Characterizations

The thermogravimetric analysis (TG) was performed on a Mettler-Toledo TGA/DSC 1/1100 ST thermal analyzer. Electrospray ionization mass spectra (ESI-MS) were recorded using a Waters Xevo G2S quadrupole time-of-flight (Q-TOF) mass spectrometer. The sample was dispersed in methanol and infused at a flow rate of 5 μ L/min. The capillary voltage was set as 2.50 kV. The source temperature and desolvation temperature were 120 and 500 °C, respectively. The desolvation gas flow was 800 L/h. Elemental analysis for metal ions was done on a Shimadzu ICPS-7500 inductively coupled plasma atomic emission spectroscopy (ICP-AES) after dissolving sample in chloroazotic acid (1 mL) followed diluted to 10 mL using deionized water. Fourier transform infrared spectra (FT-IR) were obtained on a Bruker Vector-22 FT-IR spectro-photometer using KBr pellet technique (sample/KBr = 1/100). The specific surface area of Fe₃O₄ was determined by Brunauer-Emmett-Teller (BET) method from low temperature N₂ adsorption isotherm at 77 K on a Quantachrome Autosorb-1C-VP system.

Fig. S1 FT-IR spectra (A) of Captopril (a) and Au₂₅Capt₁₈ (b), and TG analysis (B) of Au₂₅Capt₁₈.

Fig. S2 Negative mode ESI-MS analysis and isotopically resolved spectra of Au₂₅Capt₁₈.

Fig. S3 The XRD pattern of $Au_{25}Capt_{18}$

Fig. S4 Raman spectra of the pure Fe₃O₄ core (a), the magnetic support Fe₃O₄@Ni₃Al-LDH (b), the catalyst precursor Fe₃O₄@Ni₃Al-LDH@Au₂₅Capt₁₈-0.053 (c) and the catalyst γ -Fe₂O₃@Ni₃Al-LDH@Au₂₅-0.053 (d).

Fig. S4 presents a series of samples including the catalyst γ -Fe₂O₃@Ni₃Al-LDH@Au₂₅-0.053, corresponding support Fe₃O₄@Ni₃Al-LDH and precursor Fe₃O₄@Ni₃Al-LDH@Au₂₅Capt₁₈-0.053, and Fe₃O₄ core. Clearly, the pure Fe₃O₄ core exhibits a main strong band centered at 660 cm⁻¹ and two low strength ones at 517 and 311 cm⁻¹, which are characteristics of pure magnetite phase (T. Fan and H. Zhang et al., *Ind. Eng. Chem. Res.*, 2011, **50**, 9009). Then the support Fe₃O₄@Ni₃Al-LDH and the catalyst precursor Fe₃O₄@Ni₃Al-LDH@Au₂₅Capt₁₈-0.053 show the similar characteristics to Fe₃O₄, indicating the existence of the main Fe₃O₄ phase in these two samples. However, the catalyst γ -Fe₂O₃@Ni₃Al-LDH@Au₂₅-0.053 exhibits three broad structures at ca. 350, 508, and 710 cm⁻¹, which are typical characteristics of the magnetite (D. L. A. de Faria. et al., J. Raman Spectrosc. 1997, 28, 873), clearly indicating the occurrence of phase transformation from Fe₃O₄ to γ -Fe₂O₃ in the catalyst upon the loading of Au₂₅Capt₁₈ and calcinations.

Fig. S5 FT-IR spectra of γ -Fe₂O₃@Ni₃Al-LDH@Au₂₅-*x* (*x* = 0.23 (a), 0.11(a₁) and 0.053 (a₂), γ -Fe₂O₃@Mg₃Al-LDH@Au₂₅-0.21 (b), and γ -Fe₂O₃@Cu_{0.5}Mg_{2.5}Al-LDH@Au₂₅-0.2 (c), corresponding precursors (a'-c') and supports (a₀-c₀) and Fe₃O₄ (d).

Fig. S6 SEM (a, c, d, g) and TEM (b, d, f, h) images of Fe_3O_4 (a, b) and magnetic supports Fe_3O_4 @Ni₃Al-LDH(c, d), Fe_3O_4 @Mg₃Al-LDH (e, f) and Fe_3O_4 @Cu_{0.5}Mg_{2.5}Al-LDH (g, h).

Fig. S7 SEM and element mapping images of γ -Fe₂O₃@Ni₃Al-LDH@Au₂₅-0.053.

Fig. S8 SEM (a) and HRTEM (b) images of recovered catalyst γ -Fe₂O₃@Ni₃Al-LDH@Au₂₅-0.053 after ten runs (inset: the histogram of the size distribution).

Fig. S9 Conversion-time (t) plots for the aerobic oxidation of 1-phenylethanol over γ -Fe₂O₃@Ni₃Al-LDH@Au₂₅-0.23 (a), γ -Fe₂O₃@Mg₃Al-LDH@Au₂₅-0.21 (b), and γ -Fe₂O₃@Cu_{0.5}Mg_{2.5}Al-LDH@Au₂₅-0.2 at various reaction temperature in toluene.

Fig. S10 M 2p (M=Ni, Mg, Cu) XPS of γ -Fe₂O₃@Ni₃Al-LDH@Au₂₅-0.23 (a), γ -Fe₂O₃@Mg₃Al-LDH@Au₂₅-0.21 (b), γ -Fe₂O₃@Cu_{0.5}Mg_{2.5}Al-LDH@Au₂₅-0.2 (c) and the supports (a₀-c₀).

Fig. S11 O1s XPS spectra of γ -Fe₂O₃@Ni₃Al-LDH@Au₂₅-0.23 (a), γ -Fe₂O₃@Mg₃Al-LDH@Au₂₅-0.21 (b), γ -Fe₂O₃@Cu_{0.5}Mg_{2.5}Al-LDH@Au₂₅-0.2 (c), and corresponding supports (a₀-c₀).

Samples	d ₀₀₃ /nm	d ₁₁₀ /nm	a /nmª	c /nm a	D ₀₀₃ /nm ^b	D ₁₁₀ /nm b	d ₃₁₁ /nm	a /nm ^c	D ₃₁₁ /nm
Fe ₃ O ₄	-	-	-	-	-	-	0.253 0	0.83 9	29.6
Fe ₃ O ₄ @Ni ₃ Al-LDH	0.751 9	0.150 3	0.300 6	2.25	11.4	76.2	0.252 4	0.83 7	28.2
Fe ₃ O ₄ @Mg ₃ Al-LDH	0.776 9	0.150 6	0.301 2	2.33	15.4	91.1	0.253 3	0.84 0	28.8
Fe ₃ O ₄ @Cu _{0.5} Mg _{2.5} Al-LDH	0.754 1	0.149 7	0.299 4	2.26	18.4	91.8	0.250 2	0.83 0	28.7
γ-Fe ₂ O ₃ @Ni ₃ Al-LDH@Au ₂₅ -0.23	0.678 2	0.150 2	0.300 4	2.03	10.3	71.1	0.251 3	0.83 3	25.8
γ-Fe ₂ O ₃ @Ni ₃ Al-LDH@Au ₂₅ -0.11	0.683	0.150	0.300	2.05	10.5	72.2	0.253	0.83	25.9

Table S1 XRD parameters of the catalysts	γ -Fe ₂ O ₃ @M ₃ Al-LDH@Au ₂₅ - x ,	corresponding supports
Fe ₃ O ₄ @M ₃ Al-LDHs and Fe ₃ O ₄ core.		

	4	3	6				1	9	
γ-Fe ₂ O ₃ @Ni ₃ Al-LDH@Au ₂₅ -0.053	0.682	0.150	0.300	2.05	10.4	70 5	0.252	0.83	25.8
	7	1	2		10.4	12.5	7	8	
w Ea O @Mg Al I DU@Au 0 21	0.664	0.150	0.300	1.99	12.6	2 77	0.251	0.83	24.8
γ-re ₂ O ₃ @mg ₃ Ai-LDn@Au ₂₅ -0.21	$Mg_3AI-LDH(@Au_{25}-0.21)$ 12.6 3 4 8	12.0	11.5	6	4	24.0			
$\gamma - Fe_2O_3 @Cu_{0.5}Mg_{2.5}Al - LDH @Au_{25} -$	0.663	0.149	0.299	1.99	11.7	80.2	0.249	0.82	24.2
0.2	8	8	6		5	ou.2	6	8	24.3

^a Based on hexagonal crystal system, $a = 2d_{110}$, $c = 3d_{003}$. ^b Calculated by Scherrer formula, $D_{hkl} = K\lambda/(\beta \cos\theta)$ (K = 0.89; λ is the X-ray wavelength (0.1542 nm), θ is Bragg diffraction angle, β is the full width at half-maximum (in radian)). ^c Based on cubic crystal system, $1/d_{hkl}^2 = (h^2+k^2+l^2)/a^2$.

Table S2 Chemical compositions of the γ -Fe₂O₃@M₃Al-LDH@Au₂₅-x catalysts by ICP analysis.

Catalysts	Au (wt%)	Ni (wt%)	Mg (wt%)	Cu (wt%)	Al (wt%)	M(=Ni, Mg, CuMg)/Al molar ratio	Fe (wt%)
γ-Fe2O3@Ni3Al-LDH@Au25-0.23	0.23	30.81	-	-	4.87	2.909	35.67
γ-Fe ₂ O ₃ @Ni ₃ Al-LDH@Au ₂₅ -0.11	0.11	30.74	-	-	4.85	2.915	34.95
γ-Fe ₂ O ₃ @Ni ₃ Al-LDH@Au ₂₅ -0.053	0.053	32.15	-	-	5.08	2.911	35.89
γ-Fe2O3@Mg3Al-LDH@Au25-0.21	0.21	-	11.67	-	4.56	2.879	32.15
γ-Fe ₂ O ₃ @Cu _{0.5} Mg _{2.5} Al-LDH@Au ₂₅ -0.2	0.20	-	8.96	4.73	4.53	2.671	33.59

Table S3 Kinetic fitting of the aerobic oxidation of 1-phenylethanol reaction over the catalysts.^a

Catalysts	T (K)	k (h-1) b	R ²	E _a (kJ/mol) ^c	R ²
γ-Fe ₂ O ₃ @Ni ₃ Al-LDH@Au ₂₅ -0.23	333.15	1.422	0.9696	19.15	0.9989
	343.15	1.7122	0.9865		
	353.15	2.1055	0.9939		
	363.15	2.4734	0.9919		
	373.15	2.9886	0.9877		
$\gamma \text{-} Fe_2O_3 @Mg_3Al\text{-}LDH @Au_{25}\text{-}0.21 \\$	333.15	0.9104	0.9965	23.35	0.9978
	343.15	1.1915	0.9963		
	353.15	1.5300	0.9906		
	363.15	1.8486	0.9923		
	373.15	2.2576	0.9876		

$\gamma \text{-} Fe_2O_3 @Cu_{0.5}Mg_{2.5}Al\text{-}LDH @Au_{25}\text{-}0.2$	333.15	0.1770	0.9741	26.66	0.9993
	343.15	0.2346	0.9773		
	353.15	0.2988	0.9822		
	363.15	0.3943	0.9907		
	373.15	0.4959	0.9931		

^{*a*} Reaction condition: 1-phenylethanol (1 mmol), catalyst (Au: 0.2 mol%), toluene (5 mL), O₂ (20 mL/min), temperatures (60, 70, 80, 90, and 100 °C). ^{*b*} According to equation: $\ln (C_t/C_0) = -kt$ (C_t is the concentration of 1-phenylethanol at *t* time, mol/L; C₀ is the initial concentration of 1-phenylethanol, mol/L; *k* is the reaction rate constant, h⁻¹; and t is the reaction time, h). ^{*c*} According to Arrhenius equation: $\ln k = \ln A - E_a/RT$ (E_a is the apparent activation energy, kJ·mol⁻¹, *k* is the reaction rate constant, h⁻¹, A is the pre-exponential factor, h⁻¹; R is the molar gas constant, 8.314 J·mol⁻¹·K⁻¹, and T is the absolute temperature, K).

Samples	Fe 2p3/2 (eV)		M 2p3 (eV)	O 1s (eV)	
	Fe ³⁺	Fe ²⁺	Ni/Mg/Cu	(-OH)	(O ²⁻)
γ-Fe ₂ O ₃ @Ni ₃ Al-LDH@Au ₂₅ -0.23	711.9	-	856.8	532.1 (45.1%)	530.5 (54.9%)
Fe ₃ O ₄ @Ni ₃ Al-LDH	712.8	710.5	856.0	531.5 (47.6%)	529.9 (52.4%)
γ-Fe ₂ O ₃ @Mg ₃ Al-LDH@Au ₂₅ -0.21	711.3	-	50.1	532.5 (42.1%)	531.6(57.9%)
Fe ₃ O ₄ @Mg ₃ Al-LDH	711.8	710.7	50.2	532.4 (46.2%)	531.5(53.8%)
$\gamma \text{-} Fe_2O_3 @Cu_{0.5}Mg_{2.5}Al\text{-}LDH @Au_{25}\text{-}0.2$	711.4	-	934.1	532.3 (41.3%)	531.2 (58.7%)
$Fe_{3}O_{4}@Cu_{0.5}Mg_{2.5}Al\text{-}LDH$	712.1	710.6	933.6	532.1 (44.7%)	531.1 (55.3%)
Fe ₃ O ₄	711.4	710.4	-	531.1 (50.8%)	530.0 (49.2%)